L(s) = 1 | + 2·5-s + 2·11-s − 8·19-s − 25-s + 4·29-s + 16·31-s + 12·41-s + 10·49-s + 4·55-s + 8·59-s + 28·61-s − 16·71-s + 16·79-s − 20·89-s − 16·95-s + 20·101-s + 28·109-s + 3·121-s − 12·125-s + 127-s + 131-s + 137-s + 139-s + 8·145-s + 149-s + 151-s + 32·155-s + ⋯ |
L(s) = 1 | + 0.894·5-s + 0.603·11-s − 1.83·19-s − 1/5·25-s + 0.742·29-s + 2.87·31-s + 1.87·41-s + 10/7·49-s + 0.539·55-s + 1.04·59-s + 3.58·61-s − 1.89·71-s + 1.80·79-s − 2.11·89-s − 1.64·95-s + 1.99·101-s + 2.68·109-s + 3/11·121-s − 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.664·145-s + 0.0819·149-s + 0.0813·151-s + 2.57·155-s + ⋯ |
Λ(s)=(=(15681600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(15681600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
15681600
= 26⋅34⋅52⋅112
|
Sign: |
1
|
Analytic conductor: |
999.872 |
Root analytic conductor: |
5.62323 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 15681600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
4.262624915 |
L(21) |
≈ |
4.262624915 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C2 | 1−2T+pT2 |
| 11 | C1 | (1−T)2 |
good | 7 | C22 | 1−10T2+p2T4 |
| 13 | C2 | (1−pT2)2 |
| 17 | C22 | 1−18T2+p2T4 |
| 19 | C2 | (1+4T+pT2)2 |
| 23 | C22 | 1−10T2+p2T4 |
| 29 | C2 | (1−2T+pT2)2 |
| 31 | C2 | (1−8T+pT2)2 |
| 37 | C22 | 1−58T2+p2T4 |
| 41 | C2 | (1−6T+pT2)2 |
| 43 | C22 | 1−50T2+p2T4 |
| 47 | C22 | 1−90T2+p2T4 |
| 53 | C22 | 1+38T2+p2T4 |
| 59 | C2 | (1−4T+pT2)2 |
| 61 | C2 | (1−14T+pT2)2 |
| 67 | C22 | 1−34T2+p2T4 |
| 71 | C2 | (1+8T+pT2)2 |
| 73 | C22 | 1−130T2+p2T4 |
| 79 | C2 | (1−8T+pT2)2 |
| 83 | C22 | 1−162T2+p2T4 |
| 89 | C2 | (1+10T+pT2)2 |
| 97 | C2 | (1−18T+pT2)(1+18T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.561690076916054853886704956183, −8.509151204991037720525387181518, −7.969278943331290246984175117134, −7.56380120870672226378041199914, −7.07471794438814770083035953668, −6.68899086485885057007120434305, −6.39804456224879840857164182770, −6.17149480136203216358665343108, −5.66882303551193056114112541739, −5.48925641320362647852716259597, −4.67497077699503002441332596121, −4.58221927067700631649930411133, −4.02440603694632319159604924134, −3.86762120371455746166277772484, −3.00571192406293325630737643907, −2.65791307822691878667918729706, −2.15097134920176642783220814059, −1.95780733126578720706026041785, −0.913959038410848158142972276161, −0.76682447496435372864109877362,
0.76682447496435372864109877362, 0.913959038410848158142972276161, 1.95780733126578720706026041785, 2.15097134920176642783220814059, 2.65791307822691878667918729706, 3.00571192406293325630737643907, 3.86762120371455746166277772484, 4.02440603694632319159604924134, 4.58221927067700631649930411133, 4.67497077699503002441332596121, 5.48925641320362647852716259597, 5.66882303551193056114112541739, 6.17149480136203216358665343108, 6.39804456224879840857164182770, 6.68899086485885057007120434305, 7.07471794438814770083035953668, 7.56380120870672226378041199914, 7.969278943331290246984175117134, 8.509151204991037720525387181518, 8.561690076916054853886704956183