L(s) = 1 | + 2·5-s − 2·11-s − 4·13-s − 4·17-s + 3·25-s − 4·29-s − 4·31-s − 4·37-s − 4·41-s + 8·43-s − 12·49-s − 20·53-s − 4·55-s − 4·59-s − 12·61-s − 8·65-s − 12·71-s + 12·73-s − 8·79-s − 8·83-s − 8·85-s − 20·89-s − 4·97-s + 4·101-s + 24·103-s − 8·107-s − 4·109-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 0.603·11-s − 1.10·13-s − 0.970·17-s + 3/5·25-s − 0.742·29-s − 0.718·31-s − 0.657·37-s − 0.624·41-s + 1.21·43-s − 1.71·49-s − 2.74·53-s − 0.539·55-s − 0.520·59-s − 1.53·61-s − 0.992·65-s − 1.42·71-s + 1.40·73-s − 0.900·79-s − 0.878·83-s − 0.867·85-s − 2.11·89-s − 0.406·97-s + 0.398·101-s + 2.36·103-s − 0.773·107-s − 0.383·109-s + ⋯ |
Λ(s)=(=(15681600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(15681600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
15681600
= 26⋅34⋅52⋅112
|
Sign: |
1
|
Analytic conductor: |
999.872 |
Root analytic conductor: |
5.62323 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 15681600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C1 | (1−T)2 |
| 11 | C1 | (1+T)2 |
good | 7 | C22 | 1+12T2+p2T4 |
| 13 | D4 | 1+4T+28T2+4pT3+p2T4 |
| 17 | D4 | 1+4T+36T2+4pT3+p2T4 |
| 19 | C22 | 1+6T2+p2T4 |
| 23 | C22 | 1+38T2+p2T4 |
| 29 | D4 | 1+4T+54T2+4pT3+p2T4 |
| 31 | C4 | 1+4T−6T2+4pT3+p2T4 |
| 37 | D4 | 1+4T+46T2+4pT3+p2T4 |
| 41 | D4 | 1+4T+14T2+4pT3+p2T4 |
| 43 | D4 | 1−8T+100T2−8pT3+p2T4 |
| 47 | C22 | 1+86T2+p2T4 |
| 53 | D4 | 1+20T+198T2+20pT3+p2T4 |
| 59 | D4 | 1+4T+50T2+4pT3+p2T4 |
| 61 | D4 | 1+12T+150T2+12pT3+p2T4 |
| 67 | C22 | 1+62T2+p2T4 |
| 71 | C4 | 1+12T+170T2+12pT3+p2T4 |
| 73 | D4 | 1−12T+180T2−12pT3+p2T4 |
| 79 | D4 | 1+8T+142T2+8pT3+p2T4 |
| 83 | D4 | 1+8T+164T2+8pT3+p2T4 |
| 89 | D4 | 1+20T+246T2+20pT3+p2T4 |
| 97 | D4 | 1+4T+190T2+4pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.265513164557404834395079030213, −7.908970079033027260109667651765, −7.37982476357739626880923717120, −7.36232082944698600963901364124, −6.70625806993815846572572581033, −6.51074593252933263327192280547, −6.00566937903738438986698599382, −5.70372082677681664040108252280, −5.28057167260991902992444616535, −4.89672981378701668148221215481, −4.52255745184981330663156890322, −4.30217181647171831732431033724, −3.36950202238629285004491334713, −3.26759731766603956092872859718, −2.57361798734579017977230528527, −2.32677666498597041577469461569, −1.61609576815564888925979769689, −1.46443394382296823242613516156, 0, 0,
1.46443394382296823242613516156, 1.61609576815564888925979769689, 2.32677666498597041577469461569, 2.57361798734579017977230528527, 3.26759731766603956092872859718, 3.36950202238629285004491334713, 4.30217181647171831732431033724, 4.52255745184981330663156890322, 4.89672981378701668148221215481, 5.28057167260991902992444616535, 5.70372082677681664040108252280, 6.00566937903738438986698599382, 6.51074593252933263327192280547, 6.70625806993815846572572581033, 7.36232082944698600963901364124, 7.37982476357739626880923717120, 7.908970079033027260109667651765, 8.265513164557404834395079030213