L(s) = 1 | + 2·5-s − 4·7-s + 2·11-s − 8·19-s + 3·25-s − 4·29-s − 4·31-s − 8·35-s + 4·37-s − 4·41-s − 4·43-s − 8·47-s − 4·53-s + 4·55-s − 12·59-s + 12·61-s − 4·71-s − 8·77-s − 16·79-s − 12·83-s − 4·89-s − 16·95-s + 12·97-s − 20·101-s − 12·107-s − 4·109-s − 4·113-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 1.51·7-s + 0.603·11-s − 1.83·19-s + 3/5·25-s − 0.742·29-s − 0.718·31-s − 1.35·35-s + 0.657·37-s − 0.624·41-s − 0.609·43-s − 1.16·47-s − 0.549·53-s + 0.539·55-s − 1.56·59-s + 1.53·61-s − 0.474·71-s − 0.911·77-s − 1.80·79-s − 1.31·83-s − 0.423·89-s − 1.64·95-s + 1.21·97-s − 1.99·101-s − 1.16·107-s − 0.383·109-s − 0.376·113-s + ⋯ |
Λ(s)=(=(15681600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(15681600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
15681600
= 26⋅34⋅52⋅112
|
Sign: |
1
|
Analytic conductor: |
999.872 |
Root analytic conductor: |
5.62323 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 15681600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C1 | (1−T)2 |
| 11 | C1 | (1−T)2 |
good | 7 | D4 | 1+4T+16T2+4pT3+p2T4 |
| 13 | C22 | 1+24T2+p2T4 |
| 17 | C22 | 1+16T2+p2T4 |
| 19 | D4 | 1+8T+46T2+8pT3+p2T4 |
| 23 | C22 | 1+38T2+p2T4 |
| 29 | D4 | 1+4T+30T2+4pT3+p2T4 |
| 31 | D4 | 1+4T+58T2+4pT3+p2T4 |
| 37 | D4 | 1−4T+46T2−4pT3+p2T4 |
| 41 | D4 | 1+4T+54T2+4pT3+p2T4 |
| 43 | D4 | 1+4T+40T2+4pT3+p2T4 |
| 47 | D4 | 1+8T+38T2+8pT3+p2T4 |
| 53 | D4 | 1+4T+38T2+4pT3+p2T4 |
| 59 | D4 | 1+12T+146T2+12pT3+p2T4 |
| 61 | D4 | 1−12T+150T2−12pT3+p2T4 |
| 67 | C22 | 1+62T2+p2T4 |
| 71 | D4 | 1+4T+74T2+4pT3+p2T4 |
| 73 | C22 | 1+96T2+p2T4 |
| 79 | D4 | 1+16T+150T2+16pT3+p2T4 |
| 83 | D4 | 1+12T+184T2+12pT3+p2T4 |
| 89 | C2 | (1+2T+pT2)2 |
| 97 | D4 | 1−12T+222T2−12pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.194355030886597087753601489674, −8.163684674078997994178342669140, −7.24642568476115040161137961396, −7.24061560018978877647641821837, −6.61677892911359614889753164693, −6.40803401000670299423274467730, −6.16696095168987411800175414965, −5.90088373427917014200973283116, −5.18830216875547986691653458756, −5.10186981458566473880135099115, −4.26631656801897963867301040378, −4.17669831550017246343552535878, −3.51168180516876892914451575964, −3.26746097291734380070123010035, −2.64410486088545206910864162385, −2.35306552808578843653954551269, −1.56632787403980689866663588515, −1.41389604083740205549666632957, 0, 0,
1.41389604083740205549666632957, 1.56632787403980689866663588515, 2.35306552808578843653954551269, 2.64410486088545206910864162385, 3.26746097291734380070123010035, 3.51168180516876892914451575964, 4.17669831550017246343552535878, 4.26631656801897963867301040378, 5.10186981458566473880135099115, 5.18830216875547986691653458756, 5.90088373427917014200973283116, 6.16696095168987411800175414965, 6.40803401000670299423274467730, 6.61677892911359614889753164693, 7.24061560018978877647641821837, 7.24642568476115040161137961396, 8.163684674078997994178342669140, 8.194355030886597087753601489674