Properties

Label 4-3960e2-1.1-c1e2-0-13
Degree $4$
Conductor $15681600$
Sign $1$
Analytic cond. $999.872$
Root an. cond. $5.62323$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 4·7-s + 2·11-s − 8·19-s + 3·25-s − 4·29-s − 4·31-s − 8·35-s + 4·37-s − 4·41-s − 4·43-s − 8·47-s − 4·53-s + 4·55-s − 12·59-s + 12·61-s − 4·71-s − 8·77-s − 16·79-s − 12·83-s − 4·89-s − 16·95-s + 12·97-s − 20·101-s − 12·107-s − 4·109-s − 4·113-s + ⋯
L(s)  = 1  + 0.894·5-s − 1.51·7-s + 0.603·11-s − 1.83·19-s + 3/5·25-s − 0.742·29-s − 0.718·31-s − 1.35·35-s + 0.657·37-s − 0.624·41-s − 0.609·43-s − 1.16·47-s − 0.549·53-s + 0.539·55-s − 1.56·59-s + 1.53·61-s − 0.474·71-s − 0.911·77-s − 1.80·79-s − 1.31·83-s − 0.423·89-s − 1.64·95-s + 1.21·97-s − 1.99·101-s − 1.16·107-s − 0.383·109-s − 0.376·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15681600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15681600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(15681600\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(999.872\)
Root analytic conductor: \(5.62323\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 15681600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_1$ \( ( 1 - T )^{2} \)
11$C_1$ \( ( 1 - T )^{2} \)
good7$D_{4}$ \( 1 + 4 T + 16 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 24 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 8 T + 46 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 4 T + 30 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 4 T + 58 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 4 T + 46 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 4 T + 54 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 4 T + 40 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 8 T + 38 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 4 T + 38 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 12 T + 146 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 12 T + 150 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 4 T + 74 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 96 T^{2} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 16 T + 150 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 12 T + 184 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
97$D_{4}$ \( 1 - 12 T + 222 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.194355030886597087753601489674, −8.163684674078997994178342669140, −7.24642568476115040161137961396, −7.24061560018978877647641821837, −6.61677892911359614889753164693, −6.40803401000670299423274467730, −6.16696095168987411800175414965, −5.90088373427917014200973283116, −5.18830216875547986691653458756, −5.10186981458566473880135099115, −4.26631656801897963867301040378, −4.17669831550017246343552535878, −3.51168180516876892914451575964, −3.26746097291734380070123010035, −2.64410486088545206910864162385, −2.35306552808578843653954551269, −1.56632787403980689866663588515, −1.41389604083740205549666632957, 0, 0, 1.41389604083740205549666632957, 1.56632787403980689866663588515, 2.35306552808578843653954551269, 2.64410486088545206910864162385, 3.26746097291734380070123010035, 3.51168180516876892914451575964, 4.17669831550017246343552535878, 4.26631656801897963867301040378, 5.10186981458566473880135099115, 5.18830216875547986691653458756, 5.90088373427917014200973283116, 6.16696095168987411800175414965, 6.40803401000670299423274467730, 6.61677892911359614889753164693, 7.24061560018978877647641821837, 7.24642568476115040161137961396, 8.163684674078997994178342669140, 8.194355030886597087753601489674

Graph of the $Z$-function along the critical line