L(s) = 1 | − 2·5-s − 4·7-s + 2·11-s + 8·19-s − 8·23-s + 3·25-s + 4·29-s + 4·31-s + 8·35-s − 20·37-s + 4·41-s + 12·43-s − 8·47-s + 4·49-s − 4·53-s − 4·55-s − 4·59-s − 4·61-s + 8·67-s − 12·71-s − 16·73-s − 8·77-s + 16·79-s − 20·83-s − 12·89-s − 16·95-s + 4·97-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 1.51·7-s + 0.603·11-s + 1.83·19-s − 1.66·23-s + 3/5·25-s + 0.742·29-s + 0.718·31-s + 1.35·35-s − 3.28·37-s + 0.624·41-s + 1.82·43-s − 1.16·47-s + 4/7·49-s − 0.549·53-s − 0.539·55-s − 0.520·59-s − 0.512·61-s + 0.977·67-s − 1.42·71-s − 1.87·73-s − 0.911·77-s + 1.80·79-s − 2.19·83-s − 1.27·89-s − 1.64·95-s + 0.406·97-s + ⋯ |
Λ(s)=(=(15681600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(15681600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
15681600
= 26⋅34⋅52⋅112
|
Sign: |
1
|
Analytic conductor: |
999.872 |
Root analytic conductor: |
5.62323 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 15681600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C1 | (1+T)2 |
| 11 | C1 | (1−T)2 |
good | 7 | D4 | 1+4T+12T2+4pT3+p2T4 |
| 13 | C22 | 1+20T2+p2T4 |
| 17 | C22 | 1−20T2+p2T4 |
| 19 | C2 | (1−4T+pT2)2 |
| 23 | D4 | 1+8T+38T2+8pT3+p2T4 |
| 29 | D4 | 1−4T+38T2−4pT3+p2T4 |
| 31 | D4 | 1−4T+42T2−4pT3+p2T4 |
| 37 | C2 | (1+10T+pT2)2 |
| 41 | D4 | 1−4T+62T2−4pT3+p2T4 |
| 43 | D4 | 1−12T+116T2−12pT3+p2T4 |
| 47 | D4 | 1+8T+86T2+8pT3+p2T4 |
| 53 | D4 | 1+4T+86T2+4pT3+p2T4 |
| 59 | D4 | 1+4T+98T2+4pT3+p2T4 |
| 61 | D4 | 1+4T+102T2+4pT3+p2T4 |
| 67 | D4 | 1−8T+126T2−8pT3+p2T4 |
| 71 | D4 | 1+12T+154T2+12pT3+p2T4 |
| 73 | D4 | 1+16T+204T2+16pT3+p2T4 |
| 79 | C2 | (1−8T+pT2)2 |
| 83 | D4 | 1+20T+260T2+20pT3+p2T4 |
| 89 | D4 | 1+12T+118T2+12pT3+p2T4 |
| 97 | D4 | 1−4T−18T2−4pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.245197891469318402408363034459, −7.943199732467613568871250431352, −7.34635731343169978895671569852, −7.33464826741388030590326826974, −6.70847398775694334947374868371, −6.62219431817092938687080852050, −5.98334254973009386340481409487, −5.87738189451312865979326026818, −5.20833229842077125247464652728, −4.98696135942463515839338435700, −4.21134064005229065019826663617, −4.10265662636460457490231649067, −3.56381535206122722128513294102, −3.26240289590185720383366273231, −2.86935265077217966263767276121, −2.45117204778861715199089250711, −1.43648368552214193129897200113, −1.24351988193469569641720271316, 0, 0,
1.24351988193469569641720271316, 1.43648368552214193129897200113, 2.45117204778861715199089250711, 2.86935265077217966263767276121, 3.26240289590185720383366273231, 3.56381535206122722128513294102, 4.10265662636460457490231649067, 4.21134064005229065019826663617, 4.98696135942463515839338435700, 5.20833229842077125247464652728, 5.87738189451312865979326026818, 5.98334254973009386340481409487, 6.62219431817092938687080852050, 6.70847398775694334947374868371, 7.33464826741388030590326826974, 7.34635731343169978895671569852, 7.943199732467613568871250431352, 8.245197891469318402408363034459