L(s) = 1 | − 2·5-s − 4·7-s − 2·11-s − 8·19-s + 3·25-s + 4·29-s − 4·31-s + 8·35-s + 4·37-s + 4·41-s − 4·43-s + 8·47-s + 4·53-s + 4·55-s + 12·59-s + 12·61-s + 4·71-s + 8·77-s − 16·79-s + 12·83-s + 4·89-s + 16·95-s + 12·97-s + 20·101-s + 12·107-s − 4·109-s + 4·113-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 1.51·7-s − 0.603·11-s − 1.83·19-s + 3/5·25-s + 0.742·29-s − 0.718·31-s + 1.35·35-s + 0.657·37-s + 0.624·41-s − 0.609·43-s + 1.16·47-s + 0.549·53-s + 0.539·55-s + 1.56·59-s + 1.53·61-s + 0.474·71-s + 0.911·77-s − 1.80·79-s + 1.31·83-s + 0.423·89-s + 1.64·95-s + 1.21·97-s + 1.99·101-s + 1.16·107-s − 0.383·109-s + 0.376·113-s + ⋯ |
Λ(s)=(=(15681600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(15681600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
15681600
= 26⋅34⋅52⋅112
|
Sign: |
1
|
Analytic conductor: |
999.872 |
Root analytic conductor: |
5.62323 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 15681600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.217561855 |
L(21) |
≈ |
1.217561855 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C1 | (1+T)2 |
| 11 | C1 | (1+T)2 |
good | 7 | D4 | 1+4T+16T2+4pT3+p2T4 |
| 13 | C22 | 1+24T2+p2T4 |
| 17 | C22 | 1+16T2+p2T4 |
| 19 | D4 | 1+8T+46T2+8pT3+p2T4 |
| 23 | C22 | 1+38T2+p2T4 |
| 29 | D4 | 1−4T+30T2−4pT3+p2T4 |
| 31 | D4 | 1+4T+58T2+4pT3+p2T4 |
| 37 | D4 | 1−4T+46T2−4pT3+p2T4 |
| 41 | D4 | 1−4T+54T2−4pT3+p2T4 |
| 43 | D4 | 1+4T+40T2+4pT3+p2T4 |
| 47 | D4 | 1−8T+38T2−8pT3+p2T4 |
| 53 | D4 | 1−4T+38T2−4pT3+p2T4 |
| 59 | D4 | 1−12T+146T2−12pT3+p2T4 |
| 61 | D4 | 1−12T+150T2−12pT3+p2T4 |
| 67 | C22 | 1+62T2+p2T4 |
| 71 | D4 | 1−4T+74T2−4pT3+p2T4 |
| 73 | C22 | 1+96T2+p2T4 |
| 79 | D4 | 1+16T+150T2+16pT3+p2T4 |
| 83 | D4 | 1−12T+184T2−12pT3+p2T4 |
| 89 | C2 | (1−2T+pT2)2 |
| 97 | D4 | 1−12T+222T2−12pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.606088853871438762727263899983, −8.315436329354925363242536196633, −7.897752765158683490692135554973, −7.59123582022504381012651933355, −7.05007267462379839584269795809, −6.89069243100507081497991434046, −6.42726327278666507722018433274, −6.20028629326285780889600834027, −5.72418659637057702562248655727, −5.32239700098825477563651214801, −4.82908027777640229947502383782, −4.31200300994431665749310696553, −4.10045471059502583758509609818, −3.62941404009603366868147852602, −3.19897247149752880576649682272, −2.84705963764479627571533574096, −2.23213888462537797815943033338, −1.95474066511156490144334047948, −0.72567876661307557380803438624, −0.47043807554754514671534769534,
0.47043807554754514671534769534, 0.72567876661307557380803438624, 1.95474066511156490144334047948, 2.23213888462537797815943033338, 2.84705963764479627571533574096, 3.19897247149752880576649682272, 3.62941404009603366868147852602, 4.10045471059502583758509609818, 4.31200300994431665749310696553, 4.82908027777640229947502383782, 5.32239700098825477563651214801, 5.72418659637057702562248655727, 6.20028629326285780889600834027, 6.42726327278666507722018433274, 6.89069243100507081497991434046, 7.05007267462379839584269795809, 7.59123582022504381012651933355, 7.897752765158683490692135554973, 8.315436329354925363242536196633, 8.606088853871438762727263899983