Properties

Label 4-393984-1.1-c1e2-0-18
Degree $4$
Conductor $393984$
Sign $-1$
Analytic cond. $25.1207$
Root an. cond. $2.23876$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·11-s − 4·17-s + 5·19-s + 4·25-s − 14·41-s − 10·43-s − 10·49-s − 2·67-s + 20·73-s − 14·83-s − 4·89-s − 8·107-s − 18·113-s − 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 6·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 0.603·11-s − 0.970·17-s + 1.14·19-s + 4/5·25-s − 2.18·41-s − 1.52·43-s − 1.42·49-s − 0.244·67-s + 2.34·73-s − 1.53·83-s − 0.423·89-s − 0.773·107-s − 1.69·113-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.461·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 393984 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 393984 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(393984\)    =    \(2^{8} \cdot 3^{4} \cdot 19\)
Sign: $-1$
Analytic conductor: \(25.1207\)
Root analytic conductor: \(2.23876\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 393984,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
19$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 6 T + p T^{2} ) \)
good5$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 40 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 78 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 60 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 14 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.417392318980020335350764696572, −8.105280168978459503690321851900, −7.48608603641513830932619017380, −6.97953621646410800160984453847, −6.64381896006505864434012622569, −6.21805662666855670434489105306, −5.36638324801711127923719635815, −5.12309217238773725530963190499, −4.72566736895393909920154584972, −3.95882121351609270736426090960, −3.30751435481752369468116959996, −2.90865415911878850219722299526, −2.08031981858606058339953538282, −1.33784736897546210879609948594, 0, 1.33784736897546210879609948594, 2.08031981858606058339953538282, 2.90865415911878850219722299526, 3.30751435481752369468116959996, 3.95882121351609270736426090960, 4.72566736895393909920154584972, 5.12309217238773725530963190499, 5.36638324801711127923719635815, 6.21805662666855670434489105306, 6.64381896006505864434012622569, 6.97953621646410800160984453847, 7.48608603641513830932619017380, 8.105280168978459503690321851900, 8.417392318980020335350764696572

Graph of the $Z$-function along the critical line