L(s) = 1 | + 4·2-s + 9·3-s + 12·4-s − 9·5-s + 36·6-s − 18·7-s + 32·8-s + 25·9-s − 36·10-s − 17·11-s + 108·12-s + 17·13-s − 72·14-s − 81·15-s + 80·16-s − 80·17-s + 100·18-s + 38·19-s − 108·20-s − 162·21-s − 68·22-s + 73·23-s + 288·24-s − 25·25-s + 68·26-s − 36·27-s − 216·28-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 1.73·3-s + 3/2·4-s − 0.804·5-s + 2.44·6-s − 0.971·7-s + 1.41·8-s + 0.925·9-s − 1.13·10-s − 0.465·11-s + 2.59·12-s + 0.362·13-s − 1.37·14-s − 1.39·15-s + 5/4·16-s − 1.14·17-s + 1.30·18-s + 0.458·19-s − 1.20·20-s − 1.68·21-s − 0.658·22-s + 0.661·23-s + 2.44·24-s − 1/5·25-s + 0.512·26-s − 0.256·27-s − 1.45·28-s + ⋯ |
Λ(s)=(=(1444s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(1444s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1444
= 22⋅192
|
Sign: |
1
|
Analytic conductor: |
5.02688 |
Root analytic conductor: |
1.49735 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1444, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
4.303528832 |
L(21) |
≈ |
4.303528832 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−pT)2 |
| 19 | C1 | (1−pT)2 |
good | 3 | D4 | 1−p2T+56T2−p5T3+p6T4 |
| 5 | D4 | 1+9T+106T2+9p3T3+p6T4 |
| 7 | D4 | 1+18T+475T2+18p3T3+p6T4 |
| 11 | D4 | 1+17T+2716T2+17p3T3+p6T4 |
| 13 | D4 | 1−17T+1382T2−17p3T3+p6T4 |
| 17 | D4 | 1+80T+11353T2+80p3T3+p6T4 |
| 23 | D4 | 1−73T+22582T2−73p3T3+p6T4 |
| 29 | D4 | 1−3T+40732T2−3p3T3+p6T4 |
| 31 | D4 | 1−212T+35486T2−212p3T3+p6T4 |
| 37 | D4 | 1−192T+96214T2−192p3T3+p6T4 |
| 41 | D4 | 1+50T+136642T2+50p3T3+p6T4 |
| 43 | D4 | 1−677T+272702T2−677p3T3+p6T4 |
| 47 | D4 | 1+389T+153478T2+389p3T3+p6T4 |
| 53 | D4 | 1+23pT+663970T2+23p4T3+p6T4 |
| 59 | D4 | 1+287T+419944T2+287p3T3+p6T4 |
| 61 | D4 | 1−313T+253596T2−313p3T3+p6T4 |
| 67 | D4 | 1−1223T+867254T2−1223p3T3+p6T4 |
| 71 | D4 | 1−200T+480250T2−200p3T3+p6T4 |
| 73 | D4 | 1−378T+195883T2−378p3T3+p6T4 |
| 79 | D4 | 1−1350T+1380310T2−1350p3T3+p6T4 |
| 83 | D4 | 1+670T+568942T2+670p3T3+p6T4 |
| 89 | D4 | 1+236T+778834T2+236p3T3+p6T4 |
| 97 | D4 | 1−1294T+2054082T2−1294p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.72995924244702178401287918599, −15.58716924581823310625876813870, −14.71090850537627076555606662756, −14.38500981277940223423798464016, −13.68656564713630820883903045839, −13.38775329037008038079963478557, −12.72576187683773906907546760818, −12.30313414350694990763024205308, −11.12894287555751293338822293772, −11.08453363412813674368454222799, −9.697880035208362787704356901554, −9.261357644577212813933289374130, −8.084959882271028323143027320107, −7.996750157870826228222825275427, −6.83945744702810489928646858932, −6.20969467878938420561383725721, −4.89012081848617119485394458011, −3.93149329831377357804181671820, −3.16303426781052515390090952770, −2.55507133412447475098459378132,
2.55507133412447475098459378132, 3.16303426781052515390090952770, 3.93149329831377357804181671820, 4.89012081848617119485394458011, 6.20969467878938420561383725721, 6.83945744702810489928646858932, 7.996750157870826228222825275427, 8.084959882271028323143027320107, 9.261357644577212813933289374130, 9.697880035208362787704356901554, 11.08453363412813674368454222799, 11.12894287555751293338822293772, 12.30313414350694990763024205308, 12.72576187683773906907546760818, 13.38775329037008038079963478557, 13.68656564713630820883903045839, 14.38500981277940223423798464016, 14.71090850537627076555606662756, 15.58716924581823310625876813870, 15.72995924244702178401287918599