Properties

Label 4-3888e2-1.1-c1e2-0-8
Degree $4$
Conductor $15116544$
Sign $1$
Analytic cond. $963.843$
Root an. cond. $5.57187$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s + 10·13-s + 2·19-s + 2·25-s − 10·31-s − 2·37-s + 2·43-s − 11·49-s + 4·61-s − 16·67-s + 4·73-s + 2·79-s + 20·91-s + 34·97-s − 16·103-s + 34·109-s − 10·121-s + 127-s + 131-s + 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  + 0.755·7-s + 2.77·13-s + 0.458·19-s + 2/5·25-s − 1.79·31-s − 0.328·37-s + 0.304·43-s − 1.57·49-s + 0.512·61-s − 1.95·67-s + 0.468·73-s + 0.225·79-s + 2.09·91-s + 3.45·97-s − 1.57·103-s + 3.25·109-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.346·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15116544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15116544 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(15116544\)    =    \(2^{8} \cdot 3^{10}\)
Sign: $1$
Analytic conductor: \(963.843\)
Root analytic conductor: \(5.57187\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 15116544,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.641892416\)
\(L(\frac12)\) \(\approx\) \(3.641892416\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
11$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 82 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 106 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 118 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 17 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.823148884472770583686001033090, −8.292632570800360480618355268794, −7.889909888006925658409255709715, −7.72253562023634107256833095808, −7.22073864149760325444080616349, −6.81574589779543637368539971185, −6.28554038131584619415916166866, −6.19601898208036417515526512565, −5.63429678017844926628142228106, −5.42599137125184929601519370235, −4.83706904053187060669113718097, −4.58022826876496116172597702043, −3.81573367725641187139774016798, −3.80632793632654084893354210457, −3.23592837460017240011479082399, −2.92573440025065869437037121154, −1.96026140301677575807151011176, −1.72304635608116323224123903823, −1.23579631315049212244451551519, −0.59702866500578487456240907865, 0.59702866500578487456240907865, 1.23579631315049212244451551519, 1.72304635608116323224123903823, 1.96026140301677575807151011176, 2.92573440025065869437037121154, 3.23592837460017240011479082399, 3.80632793632654084893354210457, 3.81573367725641187139774016798, 4.58022826876496116172597702043, 4.83706904053187060669113718097, 5.42599137125184929601519370235, 5.63429678017844926628142228106, 6.19601898208036417515526512565, 6.28554038131584619415916166866, 6.81574589779543637368539971185, 7.22073864149760325444080616349, 7.72253562023634107256833095808, 7.889909888006925658409255709715, 8.292632570800360480618355268794, 8.823148884472770583686001033090

Graph of the $Z$-function along the critical line