L(s) = 1 | − 2·2-s + 2·3-s + 3·4-s − 2·5-s − 4·6-s − 4·8-s + 3·9-s + 4·10-s − 4·11-s + 6·12-s + 2·13-s − 4·15-s + 5·16-s − 8·17-s − 6·18-s + 10·19-s − 6·20-s + 8·22-s − 10·23-s − 8·24-s − 4·26-s + 4·27-s − 2·29-s + 8·30-s − 4·31-s − 6·32-s − 8·33-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 1.15·3-s + 3/2·4-s − 0.894·5-s − 1.63·6-s − 1.41·8-s + 9-s + 1.26·10-s − 1.20·11-s + 1.73·12-s + 0.554·13-s − 1.03·15-s + 5/4·16-s − 1.94·17-s − 1.41·18-s + 2.29·19-s − 1.34·20-s + 1.70·22-s − 2.08·23-s − 1.63·24-s − 0.784·26-s + 0.769·27-s − 0.371·29-s + 1.46·30-s − 0.718·31-s − 1.06·32-s − 1.39·33-s + ⋯ |
Λ(s)=(=(14607684s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(14607684s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
14607684
= 22⋅32⋅74⋅132
|
Sign: |
1
|
Analytic conductor: |
931.398 |
Root analytic conductor: |
5.52438 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 14607684, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+T)2 |
| 3 | C1 | (1−T)2 |
| 7 | | 1 |
| 13 | C1 | (1−T)2 |
good | 5 | D4 | 1+2T+4T2+2pT3+p2T4 |
| 11 | D4 | 1+4T+19T2+4pT3+p2T4 |
| 17 | D4 | 1+8T+43T2+8pT3+p2T4 |
| 19 | C2 | (1−5T+pT2)2 |
| 23 | D4 | 1+10T+64T2+10pT3+p2T4 |
| 29 | D4 | 1+2T+31T2+2pT3+p2T4 |
| 31 | D4 | 1+4T+38T2+4pT3+p2T4 |
| 37 | D4 | 1−6T+76T2−6pT3+p2T4 |
| 41 | D4 | 1+10T+100T2+10pT3+p2T4 |
| 43 | C22 | 1+58T2+p2T4 |
| 47 | C2 | (1−3T+pT2)2 |
| 53 | C2 | (1+3T+pT2)2 |
| 59 | C22 | 1+55T2+p2T4 |
| 61 | D4 | 1+8T+75T2+8pT3+p2T4 |
| 67 | D4 | 1+6T+31T2+6pT3+p2T4 |
| 71 | D4 | 1−22T+235T2−22pT3+p2T4 |
| 73 | D4 | 1+22T+260T2+22pT3+p2T4 |
| 79 | C2 | (1+10T+pT2)2 |
| 83 | D4 | 1+16T+202T2+16pT3+p2T4 |
| 89 | D4 | 1−18T+196T2−18pT3+p2T4 |
| 97 | D4 | 1+14T+180T2+14pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.137268305236160172415194446149, −8.075866292435197277483842580689, −7.62761906499602603133425477889, −7.61723073235035246849060056607, −6.91843924780574986112825004724, −6.89985659807353539749792378616, −6.24092644997960384654825484801, −5.70378190625531471709317989893, −5.51237617004546589237254956116, −4.83677546507183315512320937418, −4.17317481185997228729501704676, −4.14316911150518593870444560600, −3.36099736752790372719097445675, −3.18906377798137353750742715907, −2.56525921700966039264616764806, −2.28330578840492803100587690073, −1.63302423646835084744839110438, −1.24172395683391563791530561812, 0, 0,
1.24172395683391563791530561812, 1.63302423646835084744839110438, 2.28330578840492803100587690073, 2.56525921700966039264616764806, 3.18906377798137353750742715907, 3.36099736752790372719097445675, 4.14316911150518593870444560600, 4.17317481185997228729501704676, 4.83677546507183315512320937418, 5.51237617004546589237254956116, 5.70378190625531471709317989893, 6.24092644997960384654825484801, 6.89985659807353539749792378616, 6.91843924780574986112825004724, 7.61723073235035246849060056607, 7.62761906499602603133425477889, 8.075866292435197277483842580689, 8.137268305236160172415194446149