Properties

Label 4-3822e2-1.1-c1e2-0-10
Degree $4$
Conductor $14607684$
Sign $1$
Analytic cond. $931.398$
Root an. cond. $5.52438$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·3-s + 3·4-s − 2·5-s − 4·6-s − 4·8-s + 3·9-s + 4·10-s − 4·11-s + 6·12-s + 2·13-s − 4·15-s + 5·16-s − 8·17-s − 6·18-s + 10·19-s − 6·20-s + 8·22-s − 10·23-s − 8·24-s − 4·26-s + 4·27-s − 2·29-s + 8·30-s − 4·31-s − 6·32-s − 8·33-s + ⋯
L(s)  = 1  − 1.41·2-s + 1.15·3-s + 3/2·4-s − 0.894·5-s − 1.63·6-s − 1.41·8-s + 9-s + 1.26·10-s − 1.20·11-s + 1.73·12-s + 0.554·13-s − 1.03·15-s + 5/4·16-s − 1.94·17-s − 1.41·18-s + 2.29·19-s − 1.34·20-s + 1.70·22-s − 2.08·23-s − 1.63·24-s − 0.784·26-s + 0.769·27-s − 0.371·29-s + 1.46·30-s − 0.718·31-s − 1.06·32-s − 1.39·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14607684 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14607684 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(14607684\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(931.398\)
Root analytic conductor: \(5.52438\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 14607684,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3$C_1$ \( ( 1 - T )^{2} \)
7 \( 1 \)
13$C_1$ \( ( 1 - T )^{2} \)
good5$D_{4}$ \( 1 + 2 T + 4 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + 4 T + 19 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 8 T + 43 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
23$D_{4}$ \( 1 + 10 T + 64 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 2 T + 31 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 4 T + 38 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 6 T + 76 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 10 T + 100 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 55 T^{2} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 8 T + 75 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 6 T + 31 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 22 T + 235 T^{2} - 22 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 22 T + 260 T^{2} + 22 p T^{3} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
83$D_{4}$ \( 1 + 16 T + 202 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 18 T + 196 T^{2} - 18 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 14 T + 180 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.137268305236160172415194446149, −8.075866292435197277483842580689, −7.62761906499602603133425477889, −7.61723073235035246849060056607, −6.91843924780574986112825004724, −6.89985659807353539749792378616, −6.24092644997960384654825484801, −5.70378190625531471709317989893, −5.51237617004546589237254956116, −4.83677546507183315512320937418, −4.17317481185997228729501704676, −4.14316911150518593870444560600, −3.36099736752790372719097445675, −3.18906377798137353750742715907, −2.56525921700966039264616764806, −2.28330578840492803100587690073, −1.63302423646835084744839110438, −1.24172395683391563791530561812, 0, 0, 1.24172395683391563791530561812, 1.63302423646835084744839110438, 2.28330578840492803100587690073, 2.56525921700966039264616764806, 3.18906377798137353750742715907, 3.36099736752790372719097445675, 4.14316911150518593870444560600, 4.17317481185997228729501704676, 4.83677546507183315512320937418, 5.51237617004546589237254956116, 5.70378190625531471709317989893, 6.24092644997960384654825484801, 6.89985659807353539749792378616, 6.91843924780574986112825004724, 7.61723073235035246849060056607, 7.62761906499602603133425477889, 8.075866292435197277483842580689, 8.137268305236160172415194446149

Graph of the $Z$-function along the critical line