L(s) = 1 | − 8·13-s + 25-s − 8·37-s + 2·49-s − 20·61-s + 4·73-s − 20·97-s − 20·109-s − 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
L(s) = 1 | − 2.21·13-s + 1/5·25-s − 1.31·37-s + 2/7·49-s − 2.56·61-s + 0.468·73-s − 2.03·97-s − 1.91·109-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯ |
Λ(s)=(=(129600s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(129600s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
129600
= 26⋅34⋅52
|
Sign: |
−1
|
Analytic conductor: |
8.26340 |
Root analytic conductor: |
1.69546 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 129600, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C1×C1 | (1−T)(1+T) |
good | 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C22 | 1+10T2+p2T4 |
| 13 | C2 | (1+4T+pT2)2 |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 19 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 23 | C22 | 1+34T2+p2T4 |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C22 | 1−50T2+p2T4 |
| 37 | C2 | (1+4T+pT2)2 |
| 41 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 43 | C22 | 1−38T2+p2T4 |
| 47 | C22 | 1+82T2+p2T4 |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C22 | 1+106T2+p2T4 |
| 61 | C2 | (1+10T+pT2)2 |
| 67 | C22 | 1−86T2+p2T4 |
| 71 | C22 | 1−50T2+p2T4 |
| 73 | C2 | (1−2T+pT2)2 |
| 79 | C22 | 1−50T2+p2T4 |
| 83 | C22 | 1+58T2+p2T4 |
| 89 | C2 | (1+pT2)2 |
| 97 | C2 | (1+10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.206150334203433277032805518075, −8.726729716648949012339085952986, −8.115025891174599029868796914500, −7.56955194003007377787059704536, −7.27811208276789072767353456205, −6.72982410874228824953087586964, −6.20472733169143353996301240057, −5.38965699084713833393947846363, −5.08672178038356679981437010710, −4.52031162325514830676751253759, −3.87096965336205369146462548095, −2.98620008521077513444486906212, −2.50155778785474847198298296681, −1.59933090642997300853612755639, 0,
1.59933090642997300853612755639, 2.50155778785474847198298296681, 2.98620008521077513444486906212, 3.87096965336205369146462548095, 4.52031162325514830676751253759, 5.08672178038356679981437010710, 5.38965699084713833393947846363, 6.20472733169143353996301240057, 6.72982410874228824953087586964, 7.27811208276789072767353456205, 7.56955194003007377787059704536, 8.115025891174599029868796914500, 8.726729716648949012339085952986, 9.206150334203433277032805518075