Properties

Label 4-360e2-1.1-c1e2-0-25
Degree $4$
Conductor $129600$
Sign $1$
Analytic cond. $8.26340$
Root an. cond. $1.69546$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 4·13-s + 12·17-s + 3·25-s − 12·29-s + 4·37-s − 12·41-s − 10·49-s + 12·53-s + 4·61-s + 8·65-s + 4·73-s + 24·85-s + 12·89-s + 4·97-s − 12·101-s + 4·109-s + 12·113-s − 22·121-s + 4·125-s + 127-s + 131-s + 137-s + 139-s − 24·145-s + 149-s + 151-s + ⋯
L(s)  = 1  + 0.894·5-s + 1.10·13-s + 2.91·17-s + 3/5·25-s − 2.22·29-s + 0.657·37-s − 1.87·41-s − 1.42·49-s + 1.64·53-s + 0.512·61-s + 0.992·65-s + 0.468·73-s + 2.60·85-s + 1.27·89-s + 0.406·97-s − 1.19·101-s + 0.383·109-s + 1.12·113-s − 2·121-s + 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1.99·145-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(129600\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(8.26340\)
Root analytic conductor: \(1.69546\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 129600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.141031885\)
\(L(\frac12)\) \(\approx\) \(2.141031885\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_1$ \( ( 1 - T )^{2} \)
good7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.633261704500415779063377753491, −8.847850276232423443211930888771, −8.536040373596851277524077678909, −7.74818737522785607031159368119, −7.64589778281564359800589548721, −6.88656092970954199609923322632, −6.21444115782927123192608967686, −5.90138678053477774939394585997, −5.19647848534431193907436500640, −5.17606419420266207753384183426, −3.71119793411816721603957340078, −3.70610300459195515417889608627, −2.84705552122166969163585152299, −1.81793015252092636076156145980, −1.16915866227454488376692012454, 1.16915866227454488376692012454, 1.81793015252092636076156145980, 2.84705552122166969163585152299, 3.70610300459195515417889608627, 3.71119793411816721603957340078, 5.17606419420266207753384183426, 5.19647848534431193907436500640, 5.90138678053477774939394585997, 6.21444115782927123192608967686, 6.88656092970954199609923322632, 7.64589778281564359800589548721, 7.74818737522785607031159368119, 8.536040373596851277524077678909, 8.847850276232423443211930888771, 9.633261704500415779063377753491

Graph of the $Z$-function along the critical line