Properties

Label 4-3520e2-1.1-c1e2-0-15
Degree $4$
Conductor $12390400$
Sign $1$
Analytic cond. $790.022$
Root an. cond. $5.30163$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·7-s − 3·9-s − 6·17-s − 16·23-s − 25-s + 2·31-s + 8·41-s + 24·47-s + 13·49-s + 18·63-s − 6·71-s + 20·73-s − 16·79-s + 30·89-s − 12·97-s − 8·103-s − 16·113-s + 36·119-s − 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 18·153-s + 157-s + ⋯
L(s)  = 1  − 2.26·7-s − 9-s − 1.45·17-s − 3.33·23-s − 1/5·25-s + 0.359·31-s + 1.24·41-s + 3.50·47-s + 13/7·49-s + 2.26·63-s − 0.712·71-s + 2.34·73-s − 1.80·79-s + 3.17·89-s − 1.21·97-s − 0.788·103-s − 1.50·113-s + 3.30·119-s − 0.0909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 1.45·153-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12390400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12390400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(12390400\)    =    \(2^{12} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(790.022\)
Root analytic conductor: \(5.30163\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 12390400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 + T^{2} \)
11$C_2$ \( 1 + T^{2} \)
good3$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
29$C_2^2$ \( 1 - 57 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 97 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 47 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 15 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.740546603057181807898507357560, −7.909551363410651889764112586006, −7.77270660990524444649898022305, −7.20748501929378748583051255191, −6.82626916871552478550077794932, −6.37419056431625582475047682117, −6.09535469577282785154569942488, −6.00197685552789543046916491073, −5.58330832547238990472513382801, −5.04465345149384411683308847517, −4.27437182921435493887964887633, −3.95539993664598257024996455228, −3.91382132591281820584977839093, −3.18142779054197125994179849725, −2.76254692520634430098911034900, −2.23728560771767265218240020092, −2.16330794505844415174798995602, −0.925036737731665753943887119321, 0, 0, 0.925036737731665753943887119321, 2.16330794505844415174798995602, 2.23728560771767265218240020092, 2.76254692520634430098911034900, 3.18142779054197125994179849725, 3.91382132591281820584977839093, 3.95539993664598257024996455228, 4.27437182921435493887964887633, 5.04465345149384411683308847517, 5.58330832547238990472513382801, 6.00197685552789543046916491073, 6.09535469577282785154569942488, 6.37419056431625582475047682117, 6.82626916871552478550077794932, 7.20748501929378748583051255191, 7.77270660990524444649898022305, 7.909551363410651889764112586006, 8.740546603057181807898507357560

Graph of the $Z$-function along the critical line