L(s) = 1 | − 16·4-s − 43·9-s + 1.11e3·11-s + 256·16-s + 4.07e3·19-s + 1.00e4·29-s + 1.13e4·31-s + 688·36-s − 4.84e3·41-s − 1.77e4·44-s − 2.40e3·49-s − 1.14e4·59-s − 7.22e4·61-s − 4.09e3·64-s + 3.21e4·71-s − 6.52e4·76-s + 1.28e5·79-s − 5.72e4·81-s + 1.43e5·89-s − 4.77e4·99-s − 1.14e5·101-s − 1.76e5·109-s − 1.60e5·116-s + 6.01e5·121-s − 1.82e5·124-s + 127-s + 131-s + ⋯ |
L(s) = 1 | − 1/2·4-s − 0.176·9-s + 2.76·11-s + 1/4·16-s + 2.59·19-s + 2.20·29-s + 2.12·31-s + 0.0884·36-s − 0.450·41-s − 1.38·44-s − 1/7·49-s − 0.428·59-s − 2.48·61-s − 1/8·64-s + 0.757·71-s − 1.29·76-s + 2.31·79-s − 0.968·81-s + 1.91·89-s − 0.489·99-s − 1.11·101-s − 1.42·109-s − 1.10·116-s + 3.73·121-s − 1.06·124-s + 5.50e−6·127-s + 5.09e−6·131-s + ⋯ |
Λ(s)=(=(122500s/2ΓC(s)2L(s)Λ(6−s)
Λ(s)=(=(122500s/2ΓC(s+5/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
122500
= 22⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
3151.06 |
Root analytic conductor: |
7.49228 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 122500, ( :5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
4.887761490 |
L(21) |
≈ |
4.887761490 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+p4T2 |
| 5 | | 1 |
| 7 | C2 | 1+p4T2 |
good | 3 | C22 | 1+43T2+p10T4 |
| 11 | C2 | (1−555T+p5T2)2 |
| 13 | C22 | 1−684505T2+p10T4 |
| 17 | C22 | 1−616633T2+p10T4 |
| 19 | C2 | (1−2038T+p5T2)2 |
| 23 | C22 | 1−11359786T2+p10T4 |
| 29 | C2 | (1−5001T+p5T2)2 |
| 31 | C2 | (1−5696T+p5T2)2 |
| 37 | C22 | 1−107305510T2+p10T4 |
| 41 | C2 | (1+2424T+p5T2)2 |
| 43 | C22 | 1−158818p2T2+p10T4 |
| 47 | C22 | 1+77834555T2+p10T4 |
| 53 | C22 | 1−196503370T2+p10T4 |
| 59 | C2 | (1+5724T+p5T2)2 |
| 61 | C2 | (1+592pT+p5T2)2 |
| 67 | C22 | 1+1669488602T2+p10T4 |
| 71 | C2 | (1−16080T+p5T2)2 |
| 73 | C22 | 1+2331209138T2+p10T4 |
| 79 | C2 | (1−64147T+p5T2)2 |
| 83 | C22 | 1+3418207370T2+p10T4 |
| 89 | C2 | (1−71676T+p5T2)2 |
| 97 | C22 | 1+5633870111T2+p10T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.79436551992783854040129524485, −10.46105753580863299980992283273, −9.665584866555970450980743718289, −9.456745655161154827255724815166, −9.301828437467604673834132144747, −8.531504222638364019542957352750, −8.221087832401596413136055544246, −7.63559629086931441032039897191, −6.96674019568112547110125440797, −6.49643343210158103303950850906, −6.25026670490442218478676980501, −5.53427091592031866883421927762, −4.66975685954181328755070924381, −4.63320630788029861859570397367, −3.75633852047851529771488045172, −3.28007492211831578059512920654, −2.77116584728048343214059821393, −1.55533415445948253457156174616, −1.06191224531082288781426379242, −0.73413857434771612288531027909,
0.73413857434771612288531027909, 1.06191224531082288781426379242, 1.55533415445948253457156174616, 2.77116584728048343214059821393, 3.28007492211831578059512920654, 3.75633852047851529771488045172, 4.63320630788029861859570397367, 4.66975685954181328755070924381, 5.53427091592031866883421927762, 6.25026670490442218478676980501, 6.49643343210158103303950850906, 6.96674019568112547110125440797, 7.63559629086931441032039897191, 8.221087832401596413136055544246, 8.531504222638364019542957352750, 9.301828437467604673834132144747, 9.456745655161154827255724815166, 9.665584866555970450980743718289, 10.46105753580863299980992283273, 10.79436551992783854040129524485