L(s) = 1 | − 2·2-s + 3·4-s − 2·7-s − 4·8-s + 4·13-s + 4·14-s + 5·16-s + 4·17-s + 8·19-s − 4·23-s − 8·26-s − 6·28-s + 4·29-s + 8·31-s − 6·32-s − 8·34-s + 4·37-s − 16·38-s − 12·41-s + 8·43-s + 8·46-s + 8·47-s + 3·49-s + 12·52-s − 12·53-s + 8·56-s − 8·58-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s − 0.755·7-s − 1.41·8-s + 1.10·13-s + 1.06·14-s + 5/4·16-s + 0.970·17-s + 1.83·19-s − 0.834·23-s − 1.56·26-s − 1.13·28-s + 0.742·29-s + 1.43·31-s − 1.06·32-s − 1.37·34-s + 0.657·37-s − 2.59·38-s − 1.87·41-s + 1.21·43-s + 1.17·46-s + 1.16·47-s + 3/7·49-s + 1.66·52-s − 1.64·53-s + 1.06·56-s − 1.05·58-s + ⋯ |
Λ(s)=(=(122500s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(122500s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
122500
= 22⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
7.81070 |
Root analytic conductor: |
1.67175 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 122500, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.8274790315 |
L(21) |
≈ |
0.8274790315 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+T)2 |
| 5 | | 1 |
| 7 | C1 | (1+T)2 |
good | 3 | C22 | 1+p2T4 |
| 11 | C22 | 1−2T2+p2T4 |
| 13 | D4 | 1−4T+24T2−4pT3+p2T4 |
| 17 | C2 | (1−2T+pT2)2 |
| 19 | D4 | 1−8T+48T2−8pT3+p2T4 |
| 23 | D4 | 1+4T+26T2+4pT3+p2T4 |
| 29 | D4 | 1−4T+38T2−4pT3+p2T4 |
| 31 | D4 | 1−8T+54T2−8pT3+p2T4 |
| 37 | C2 | (1−2T+pT2)2 |
| 41 | D4 | 1+12T+94T2+12pT3+p2T4 |
| 43 | D4 | 1−8T+78T2−8pT3+p2T4 |
| 47 | D4 | 1−8T+86T2−8pT3+p2T4 |
| 53 | D4 | 1+12T+118T2+12pT3+p2T4 |
| 59 | D4 | 1+8T+128T2+8pT3+p2T4 |
| 61 | D4 | 1−12T+152T2−12pT3+p2T4 |
| 67 | C2 | (1+8T+pT2)2 |
| 71 | D4 | 1+12T+154T2+12pT3+p2T4 |
| 73 | D4 | 1+4T+126T2+4pT3+p2T4 |
| 79 | D4 | 1−4T+138T2−4pT3+p2T4 |
| 83 | C22 | 1+160T2+p2T4 |
| 89 | C2 | (1+10T+pT2)2 |
| 97 | D4 | 1−12T+134T2−12pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.54672523315593664549491618870, −11.29554923076180718025028882069, −10.55325367837767017951933665498, −10.07728113875637408344071753299, −10.01439033783112463655606599604, −9.485146979364800771182089474166, −8.834744037874522940583574844152, −8.664179296918683319137492382330, −7.86879656006639784858071167283, −7.70971377206101767237854140637, −7.10347793159328129078698097105, −6.53697423851433080849603310003, −5.87882779279032724825489227814, −5.83104606741587686350813742208, −4.80557649010691109432273744906, −3.95932668971741598004652805776, −3.05424496039282091499674828238, −2.97562386654069150960632236205, −1.61740142176884504055417047922, −0.862503666228635144429925468519,
0.862503666228635144429925468519, 1.61740142176884504055417047922, 2.97562386654069150960632236205, 3.05424496039282091499674828238, 3.95932668971741598004652805776, 4.80557649010691109432273744906, 5.83104606741587686350813742208, 5.87882779279032724825489227814, 6.53697423851433080849603310003, 7.10347793159328129078698097105, 7.70971377206101767237854140637, 7.86879656006639784858071167283, 8.664179296918683319137492382330, 8.834744037874522940583574844152, 9.485146979364800771182089474166, 10.01439033783112463655606599604, 10.07728113875637408344071753299, 10.55325367837767017951933665498, 11.29554923076180718025028882069, 11.54672523315593664549491618870