L(s) = 1 | + 3-s + 2·5-s + 9-s + 2·15-s − 8·19-s + 3·25-s + 27-s − 4·29-s + 24·43-s + 2·45-s + 16·47-s − 14·49-s + 12·53-s − 8·57-s + 8·67-s + 16·71-s − 12·73-s + 3·75-s + 81-s − 4·87-s − 16·95-s + 4·97-s + 12·101-s − 6·121-s + 4·125-s + 127-s + 24·129-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.894·5-s + 1/3·9-s + 0.516·15-s − 1.83·19-s + 3/5·25-s + 0.192·27-s − 0.742·29-s + 3.65·43-s + 0.298·45-s + 2.33·47-s − 2·49-s + 1.64·53-s − 1.05·57-s + 0.977·67-s + 1.89·71-s − 1.40·73-s + 0.346·75-s + 1/9·81-s − 0.428·87-s − 1.64·95-s + 0.406·97-s + 1.19·101-s − 0.545·121-s + 0.357·125-s + 0.0887·127-s + 2.11·129-s + ⋯ |
Λ(s)=(=(345600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(345600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
345600
= 29⋅33⋅52
|
Sign: |
1
|
Analytic conductor: |
22.0357 |
Root analytic conductor: |
2.16661 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 345600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.631757453 |
L(21) |
≈ |
2.631757453 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | 1−T |
| 5 | C1 | (1−T)2 |
good | 7 | C2 | (1+pT2)2 |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 19 | C2 | (1+4T+pT2)2 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1+2T+pT2)2 |
| 31 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 37 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1−12T+pT2)2 |
| 47 | C2 | (1−8T+pT2)2 |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 61 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 67 | C2 | (1−4T+pT2)2 |
| 71 | C2 | (1−8T+pT2)2 |
| 73 | C2 | (1+6T+pT2)2 |
| 79 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 83 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 89 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 97 | C2 | (1−2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.979673560126252996904408641448, −8.323057177226078640880314002796, −7.85971332456036455091052470017, −7.36860587905514204016946354425, −6.89270810769313104844169224865, −6.38799072784883331024834438481, −5.83633635666208002119272737589, −5.59585158632682227968586342616, −4.81681980421746127667781868965, −4.14224381134792067626093257234, −3.95303834850677407956821293662, −3.00246618464052305255387261031, −2.25002432004047770108316173263, −2.12011231568422406855465196308, −0.910745729015585711280898694007,
0.910745729015585711280898694007, 2.12011231568422406855465196308, 2.25002432004047770108316173263, 3.00246618464052305255387261031, 3.95303834850677407956821293662, 4.14224381134792067626093257234, 4.81681980421746127667781868965, 5.59585158632682227968586342616, 5.83633635666208002119272737589, 6.38799072784883331024834438481, 6.89270810769313104844169224865, 7.36860587905514204016946354425, 7.85971332456036455091052470017, 8.323057177226078640880314002796, 8.979673560126252996904408641448