Properties

Label 4-33e4-1.1-c3e2-0-2
Degree $4$
Conductor $1185921$
Sign $1$
Analytic cond. $4128.45$
Root an. cond. $8.01580$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 9·4-s + 14·5-s − 24·7-s + 25·8-s + 14·10-s − 30·13-s − 24·14-s + 41·16-s + 106·17-s − 50·19-s + 126·20-s − 134·23-s − 6·25-s − 30·26-s − 216·28-s − 198·29-s + 360·31-s + 249·32-s + 106·34-s − 336·35-s − 328·37-s − 50·38-s + 350·40-s − 782·41-s − 386·43-s − 134·46-s + ⋯
L(s)  = 1  + 0.353·2-s + 9/8·4-s + 1.25·5-s − 1.29·7-s + 1.10·8-s + 0.442·10-s − 0.640·13-s − 0.458·14-s + 0.640·16-s + 1.51·17-s − 0.603·19-s + 1.40·20-s − 1.21·23-s − 0.0479·25-s − 0.226·26-s − 1.45·28-s − 1.26·29-s + 2.08·31-s + 1.37·32-s + 0.534·34-s − 1.62·35-s − 1.45·37-s − 0.213·38-s + 1.38·40-s − 2.97·41-s − 1.36·43-s − 0.429·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1185921 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1185921 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1185921\)    =    \(3^{4} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(4128.45\)
Root analytic conductor: \(8.01580\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1185921,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.891966641\)
\(L(\frac12)\) \(\approx\) \(2.891966641\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
11 \( 1 \)
good2$D_{4}$ \( 1 - T - p^{3} T^{2} - p^{3} T^{3} + p^{6} T^{4} \)
5$D_{4}$ \( 1 - 14 T + 202 T^{2} - 14 p^{3} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 + 24 T + 442 T^{2} + 24 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 + 30 T + 4522 T^{2} + 30 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 - 106 T + 7882 T^{2} - 106 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 50 T + 14246 T^{2} + 50 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 134 T + 26398 T^{2} + 134 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 198 T + 57706 T^{2} + 198 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 360 T + 90430 T^{2} - 360 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 328 T + 62630 T^{2} + 328 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 782 T + 285970 T^{2} + 782 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 386 T + 179870 T^{2} + 386 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 266 T + 92542 T^{2} + 266 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 522 T + 295162 T^{2} - 522 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 172 T + 175654 T^{2} - 172 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 778 T + 577250 T^{2} - 778 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 776 T + 528582 T^{2} + 776 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 630 T + 744334 T^{2} + 630 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 1296 T + 1178926 T^{2} + 1296 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 652 T + 589506 T^{2} + 652 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 + 324 T + 579670 T^{2} + 324 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 756 T + 1427110 T^{2} - 756 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 452 T + 982470 T^{2} + 452 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.934245042926454825782532312675, −9.739207477411352049043880528928, −8.700045159963898806569393844184, −8.568690334192760499440982017620, −8.007574635839902405464755009402, −7.36874600619222199757733827180, −7.16802088833356415101923547239, −6.54057990519163946831342507042, −6.47134226174954934436996133448, −5.90037956672145233459255326518, −5.53667794354560154759450017222, −5.13290817521777248665304577474, −4.50468854484079703703921448987, −3.88294784044408409816680456072, −3.24513647224023740968945586417, −3.01276564681999803640336110368, −2.28873277299923941134313905145, −1.69784035443449965483003523987, −1.59334280919944627883800856453, −0.34139121688279331332785064241, 0.34139121688279331332785064241, 1.59334280919944627883800856453, 1.69784035443449965483003523987, 2.28873277299923941134313905145, 3.01276564681999803640336110368, 3.24513647224023740968945586417, 3.88294784044408409816680456072, 4.50468854484079703703921448987, 5.13290817521777248665304577474, 5.53667794354560154759450017222, 5.90037956672145233459255326518, 6.47134226174954934436996133448, 6.54057990519163946831342507042, 7.16802088833356415101923547239, 7.36874600619222199757733827180, 8.007574635839902405464755009402, 8.568690334192760499440982017620, 8.700045159963898806569393844184, 9.739207477411352049043880528928, 9.934245042926454825782532312675

Graph of the $Z$-function along the critical line