L(s) = 1 | − 3-s − 5-s − 7-s − 2·9-s + 2·11-s − 7·13-s + 15-s + 2·17-s + 2·19-s + 21-s + 2·23-s − 6·25-s + 2·27-s − 15·29-s + 5·31-s − 2·33-s + 35-s + 16·37-s + 7·39-s − 11·41-s + 43-s + 2·45-s + 8·47-s − 10·49-s − 2·51-s + 6·53-s − 2·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.447·5-s − 0.377·7-s − 2/3·9-s + 0.603·11-s − 1.94·13-s + 0.258·15-s + 0.485·17-s + 0.458·19-s + 0.218·21-s + 0.417·23-s − 6/5·25-s + 0.384·27-s − 2.78·29-s + 0.898·31-s − 0.348·33-s + 0.169·35-s + 2.63·37-s + 1.12·39-s − 1.71·41-s + 0.152·43-s + 0.298·45-s + 1.16·47-s − 1.42·49-s − 0.280·51-s + 0.824·53-s − 0.269·55-s + ⋯ |
Λ(s)=(=(11182336s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(11182336s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
11182336
= 28⋅112⋅192
|
Sign: |
1
|
Analytic conductor: |
712.995 |
Root analytic conductor: |
5.16739 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 11182336, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 11 | C1 | (1−T)2 |
| 19 | C1 | (1−T)2 |
good | 3 | D4 | 1+T+pT2+pT3+p2T4 |
| 5 | D4 | 1+T+7T2+pT3+p2T4 |
| 7 | D4 | 1+T+11T2+pT3+p2T4 |
| 13 | D4 | 1+7T+35T2+7pT3+p2T4 |
| 17 | D4 | 1−2T+22T2−2pT3+p2T4 |
| 23 | D4 | 1−2T+34T2−2pT3+p2T4 |
| 29 | D4 | 1+15T+111T2+15pT3+p2T4 |
| 31 | D4 | 1−5T+39T2−5pT3+p2T4 |
| 37 | C2 | (1−8T+pT2)2 |
| 41 | D4 | 1+11T+109T2+11pT3+p2T4 |
| 43 | D4 | 1−T+83T2−pT3+p2T4 |
| 47 | D4 | 1−8T+58T2−8pT3+p2T4 |
| 53 | D4 | 1−6T+102T2−6pT3+p2T4 |
| 59 | C2 | (1−4T+pT2)2 |
| 61 | C2 | (1+2T+pT2)2 |
| 67 | D4 | 1+7T+65T2+7pT3+p2T4 |
| 71 | D4 | 1−15T+169T2−15pT3+p2T4 |
| 73 | D4 | 1+26T+302T2+26pT3+p2T4 |
| 79 | D4 | 1−2T+42T2−2pT3+p2T4 |
| 83 | D4 | 1+11T+167T2+11pT3+p2T4 |
| 89 | D4 | 1−6T+70T2−6pT3+p2T4 |
| 97 | C22 | 1−14T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.358895437090235206759436796860, −7.83200400972601025979297758630, −7.67019693490022117680034540987, −7.50131396194742971695020905811, −6.81706128950577403993615636276, −6.74562287064492887547690602924, −5.96821453965534371336900433131, −5.88375961149779338106889285144, −5.35753755528923034961581183438, −5.18609395933032407836473225252, −4.53935269492226908953650581988, −4.19418652498217995583052543980, −3.75051428546192640425754510789, −3.33235690774399847798854618134, −2.62687982149335497551463432781, −2.53341398825740151331511385314, −1.72584894135688654187460871474, −1.07731290027739869936185854387, 0, 0,
1.07731290027739869936185854387, 1.72584894135688654187460871474, 2.53341398825740151331511385314, 2.62687982149335497551463432781, 3.33235690774399847798854618134, 3.75051428546192640425754510789, 4.19418652498217995583052543980, 4.53935269492226908953650581988, 5.18609395933032407836473225252, 5.35753755528923034961581183438, 5.88375961149779338106889285144, 5.96821453965534371336900433131, 6.74562287064492887547690602924, 6.81706128950577403993615636276, 7.50131396194742971695020905811, 7.67019693490022117680034540987, 7.83200400972601025979297758630, 8.358895437090235206759436796860