Properties

Label 4-3344e2-1.1-c0e2-0-3
Degree $4$
Conductor $11182336$
Sign $1$
Analytic cond. $2.78513$
Root an. cond. $1.29184$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 2·7-s − 2·9-s + 11-s + 2·19-s + 25-s + 4·35-s + 2·43-s − 4·45-s + 49-s + 2·55-s − 4·63-s + 2·77-s + 3·81-s − 4·83-s + 4·95-s − 2·99-s − 2·125-s + 127-s + 131-s + 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯
L(s)  = 1  + 2·5-s + 2·7-s − 2·9-s + 11-s + 2·19-s + 25-s + 4·35-s + 2·43-s − 4·45-s + 49-s + 2·55-s − 4·63-s + 2·77-s + 3·81-s − 4·83-s + 4·95-s − 2·99-s − 2·125-s + 127-s + 131-s + 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11182336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11182336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(11182336\)    =    \(2^{8} \cdot 11^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(2.78513\)
Root analytic conductor: \(1.29184\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 11182336,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.764727914\)
\(L(\frac12)\) \(\approx\) \(2.764727914\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
11$C_2$ \( 1 - T + T^{2} \)
19$C_1$ \( ( 1 - T )^{2} \)
good3$C_2$ \( ( 1 + T^{2} )^{2} \)
5$C_2$ \( ( 1 - T + T^{2} )^{2} \)
7$C_2$ \( ( 1 - T + T^{2} )^{2} \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
31$C_2$ \( ( 1 + T^{2} )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
41$C_2$ \( ( 1 + T^{2} )^{2} \)
43$C_2$ \( ( 1 - T + T^{2} )^{2} \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
61$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_1$ \( ( 1 + T )^{4} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.993804142314755976768645742234, −8.662696738312860166938958859823, −8.301059966152248359103091616081, −7.990437356527933320210267153483, −7.39862789946841542544627402278, −7.38575284975012575810355834059, −6.53981517395737932477705907068, −6.27372223994604475169291171305, −5.78975655631155232458125327450, −5.61658216405953371288438319836, −5.26314336614174830622068832088, −5.13432971017195760823331787834, −4.35642101593796459106114158483, −4.11923576692080355485624399210, −3.22183988221379170375321930166, −3.01677768875011521869734197634, −2.27417374635565346642232489292, −2.14551292080394470732647440931, −1.29148352670585493178495700304, −1.25670040207136855628877895273, 1.25670040207136855628877895273, 1.29148352670585493178495700304, 2.14551292080394470732647440931, 2.27417374635565346642232489292, 3.01677768875011521869734197634, 3.22183988221379170375321930166, 4.11923576692080355485624399210, 4.35642101593796459106114158483, 5.13432971017195760823331787834, 5.26314336614174830622068832088, 5.61658216405953371288438319836, 5.78975655631155232458125327450, 6.27372223994604475169291171305, 6.53981517395737932477705907068, 7.38575284975012575810355834059, 7.39862789946841542544627402278, 7.990437356527933320210267153483, 8.301059966152248359103091616081, 8.662696738312860166938958859823, 8.993804142314755976768645742234

Graph of the $Z$-function along the critical line