L(s) = 1 | + 2·5-s + 2·7-s − 2·9-s + 11-s + 2·19-s + 25-s + 4·35-s + 2·43-s − 4·45-s + 49-s + 2·55-s − 4·63-s + 2·77-s + 3·81-s − 4·83-s + 4·95-s − 2·99-s − 2·125-s + 127-s + 131-s + 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯ |
L(s) = 1 | + 2·5-s + 2·7-s − 2·9-s + 11-s + 2·19-s + 25-s + 4·35-s + 2·43-s − 4·45-s + 49-s + 2·55-s − 4·63-s + 2·77-s + 3·81-s − 4·83-s + 4·95-s − 2·99-s − 2·125-s + 127-s + 131-s + 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯ |
Λ(s)=(=(11182336s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(11182336s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
11182336
= 28⋅112⋅192
|
Sign: |
1
|
Analytic conductor: |
2.78513 |
Root analytic conductor: |
1.29184 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 11182336, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
2.764727914 |
L(21) |
≈ |
2.764727914 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 11 | C2 | 1−T+T2 |
| 19 | C1 | (1−T)2 |
good | 3 | C2 | (1+T2)2 |
| 5 | C2 | (1−T+T2)2 |
| 7 | C2 | (1−T+T2)2 |
| 13 | C2 | (1+T2)2 |
| 17 | C2 | (1−T+T2)(1+T+T2) |
| 23 | C1×C1 | (1−T)2(1+T)2 |
| 29 | C2 | (1+T2)2 |
| 31 | C2 | (1+T2)2 |
| 37 | C1×C1 | (1−T)2(1+T)2 |
| 41 | C2 | (1+T2)2 |
| 43 | C2 | (1−T+T2)2 |
| 47 | C2 | (1−T+T2)(1+T+T2) |
| 53 | C1×C1 | (1−T)2(1+T)2 |
| 59 | C2 | (1+T2)2 |
| 61 | C2 | (1−T+T2)(1+T+T2) |
| 67 | C2 | (1+T2)2 |
| 71 | C2 | (1+T2)2 |
| 73 | C2 | (1−T+T2)(1+T+T2) |
| 79 | C1×C1 | (1−T)2(1+T)2 |
| 83 | C1 | (1+T)4 |
| 89 | C1×C1 | (1−T)2(1+T)2 |
| 97 | C1×C1 | (1−T)2(1+T)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.993804142314755976768645742234, −8.662696738312860166938958859823, −8.301059966152248359103091616081, −7.990437356527933320210267153483, −7.39862789946841542544627402278, −7.38575284975012575810355834059, −6.53981517395737932477705907068, −6.27372223994604475169291171305, −5.78975655631155232458125327450, −5.61658216405953371288438319836, −5.26314336614174830622068832088, −5.13432971017195760823331787834, −4.35642101593796459106114158483, −4.11923576692080355485624399210, −3.22183988221379170375321930166, −3.01677768875011521869734197634, −2.27417374635565346642232489292, −2.14551292080394470732647440931, −1.29148352670585493178495700304, −1.25670040207136855628877895273,
1.25670040207136855628877895273, 1.29148352670585493178495700304, 2.14551292080394470732647440931, 2.27417374635565346642232489292, 3.01677768875011521869734197634, 3.22183988221379170375321930166, 4.11923576692080355485624399210, 4.35642101593796459106114158483, 5.13432971017195760823331787834, 5.26314336614174830622068832088, 5.61658216405953371288438319836, 5.78975655631155232458125327450, 6.27372223994604475169291171305, 6.53981517395737932477705907068, 7.38575284975012575810355834059, 7.39862789946841542544627402278, 7.990437356527933320210267153483, 8.301059966152248359103091616081, 8.662696738312860166938958859823, 8.993804142314755976768645742234