L(s) = 1 | − 5-s + 2·7-s + 9-s − 2·11-s − 19-s + 25-s − 2·35-s + 2·43-s − 45-s + 49-s − 3·53-s + 2·55-s + 2·63-s − 4·77-s − 3·79-s + 2·83-s + 95-s + 3·97-s − 2·99-s + 3·121-s − 2·125-s + 127-s + 131-s − 2·133-s + 137-s + 139-s + 149-s + ⋯ |
L(s) = 1 | − 5-s + 2·7-s + 9-s − 2·11-s − 19-s + 25-s − 2·35-s + 2·43-s − 45-s + 49-s − 3·53-s + 2·55-s + 2·63-s − 4·77-s − 3·79-s + 2·83-s + 95-s + 3·97-s − 2·99-s + 3·121-s − 2·125-s + 127-s + 131-s − 2·133-s + 137-s + 139-s + 149-s + ⋯ |
Λ(s)=(=(11182336s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(11182336s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
11182336
= 28⋅112⋅192
|
Sign: |
1
|
Analytic conductor: |
2.78513 |
Root analytic conductor: |
1.29184 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 11182336, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
1.246777853 |
L(21) |
≈ |
1.246777853 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 11 | C1 | (1+T)2 |
| 19 | C2 | 1+T+T2 |
good | 3 | C22 | 1−T2+T4 |
| 5 | C1×C2 | (1+T)2(1−T+T2) |
| 7 | C2 | (1−T+T2)2 |
| 13 | C22 | 1−T2+T4 |
| 17 | C2 | (1−T+T2)(1+T+T2) |
| 23 | C2 | (1−T+T2)(1+T+T2) |
| 29 | C22 | 1−T2+T4 |
| 31 | C2 | (1+T2)2 |
| 37 | C2 | (1−T+T2)(1+T+T2) |
| 41 | C22 | 1−T2+T4 |
| 43 | C2 | (1−T+T2)2 |
| 47 | C2 | (1−T+T2)(1+T+T2) |
| 53 | C1×C2 | (1+T)2(1+T+T2) |
| 59 | C22 | 1−T2+T4 |
| 61 | C2 | (1−T+T2)(1+T+T2) |
| 67 | C22 | 1−T2+T4 |
| 71 | C22 | 1−T2+T4 |
| 73 | C2 | (1−T+T2)(1+T+T2) |
| 79 | C1×C2 | (1+T)2(1+T+T2) |
| 83 | C2 | (1−T+T2)2 |
| 89 | C2 | (1−T+T2)(1+T+T2) |
| 97 | C1×C2 | (1−T)2(1−T+T2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.794732558489193085887053209647, −8.557382882040194823215745021452, −7.959388314512843262717855707739, −7.911448115160538493617567579201, −7.71451313757838681602529753278, −7.32229208299773081309552172946, −6.96093219636892474800478845206, −6.35300844636509689178891268290, −5.97948721888090944897322787390, −5.41885627377976141548132539303, −5.06481516689991472056421212404, −4.63180437365456102900140970278, −4.49243754141138424659596183661, −4.22541799328451635045985275635, −3.47166690818274085829073388825, −3.02058738725274995818374435469, −2.50489588765767424931020944921, −1.86901931898415632542501174022, −1.62089124365510548962845749433, −0.67650917319613382229966624947,
0.67650917319613382229966624947, 1.62089124365510548962845749433, 1.86901931898415632542501174022, 2.50489588765767424931020944921, 3.02058738725274995818374435469, 3.47166690818274085829073388825, 4.22541799328451635045985275635, 4.49243754141138424659596183661, 4.63180437365456102900140970278, 5.06481516689991472056421212404, 5.41885627377976141548132539303, 5.97948721888090944897322787390, 6.35300844636509689178891268290, 6.96093219636892474800478845206, 7.32229208299773081309552172946, 7.71451313757838681602529753278, 7.911448115160538493617567579201, 7.959388314512843262717855707739, 8.557382882040194823215745021452, 8.794732558489193085887053209647