Properties

Label 4-3344e2-1.1-c0e2-0-2
Degree $4$
Conductor $11182336$
Sign $1$
Analytic cond. $2.78513$
Root an. cond. $1.29184$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 2·7-s + 9-s − 2·11-s − 19-s + 25-s − 2·35-s + 2·43-s − 45-s + 49-s − 3·53-s + 2·55-s + 2·63-s − 4·77-s − 3·79-s + 2·83-s + 95-s + 3·97-s − 2·99-s + 3·121-s − 2·125-s + 127-s + 131-s − 2·133-s + 137-s + 139-s + 149-s + ⋯
L(s)  = 1  − 5-s + 2·7-s + 9-s − 2·11-s − 19-s + 25-s − 2·35-s + 2·43-s − 45-s + 49-s − 3·53-s + 2·55-s + 2·63-s − 4·77-s − 3·79-s + 2·83-s + 95-s + 3·97-s − 2·99-s + 3·121-s − 2·125-s + 127-s + 131-s − 2·133-s + 137-s + 139-s + 149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11182336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11182336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(11182336\)    =    \(2^{8} \cdot 11^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(2.78513\)
Root analytic conductor: \(1.29184\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 11182336,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.246777853\)
\(L(\frac12)\) \(\approx\) \(1.246777853\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
11$C_1$ \( ( 1 + T )^{2} \)
19$C_2$ \( 1 + T + T^{2} \)
good3$C_2^2$ \( 1 - T^{2} + T^{4} \)
5$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
7$C_2$ \( ( 1 - T + T^{2} )^{2} \)
13$C_2^2$ \( 1 - T^{2} + T^{4} \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_2^2$ \( 1 - T^{2} + T^{4} \)
31$C_2$ \( ( 1 + T^{2} )^{2} \)
37$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
41$C_2^2$ \( 1 - T^{2} + T^{4} \)
43$C_2$ \( ( 1 - T + T^{2} )^{2} \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
59$C_2^2$ \( 1 - T^{2} + T^{4} \)
61$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
67$C_2^2$ \( 1 - T^{2} + T^{4} \)
71$C_2^2$ \( 1 - T^{2} + T^{4} \)
73$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
79$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
83$C_2$ \( ( 1 - T + T^{2} )^{2} \)
89$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
97$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.794732558489193085887053209647, −8.557382882040194823215745021452, −7.959388314512843262717855707739, −7.911448115160538493617567579201, −7.71451313757838681602529753278, −7.32229208299773081309552172946, −6.96093219636892474800478845206, −6.35300844636509689178891268290, −5.97948721888090944897322787390, −5.41885627377976141548132539303, −5.06481516689991472056421212404, −4.63180437365456102900140970278, −4.49243754141138424659596183661, −4.22541799328451635045985275635, −3.47166690818274085829073388825, −3.02058738725274995818374435469, −2.50489588765767424931020944921, −1.86901931898415632542501174022, −1.62089124365510548962845749433, −0.67650917319613382229966624947, 0.67650917319613382229966624947, 1.62089124365510548962845749433, 1.86901931898415632542501174022, 2.50489588765767424931020944921, 3.02058738725274995818374435469, 3.47166690818274085829073388825, 4.22541799328451635045985275635, 4.49243754141138424659596183661, 4.63180437365456102900140970278, 5.06481516689991472056421212404, 5.41885627377976141548132539303, 5.97948721888090944897322787390, 6.35300844636509689178891268290, 6.96093219636892474800478845206, 7.32229208299773081309552172946, 7.71451313757838681602529753278, 7.911448115160538493617567579201, 7.959388314512843262717855707739, 8.557382882040194823215745021452, 8.794732558489193085887053209647

Graph of the $Z$-function along the critical line