Properties

Label 4-3332e2-1.1-c0e2-0-8
Degree $4$
Conductor $11102224$
Sign $1$
Analytic cond. $2.76518$
Root an. cond. $1.28952$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s − 4·8-s + 9-s + 2·13-s + 5·16-s + 2·17-s − 2·18-s + 2·25-s − 4·26-s − 6·32-s − 4·34-s + 3·36-s − 4·50-s + 6·52-s − 2·53-s + 7·64-s + 6·68-s − 4·72-s + 2·89-s + 6·100-s − 4·101-s − 8·104-s + 4·106-s + 2·117-s + 121-s + 127-s + ⋯
L(s)  = 1  − 2·2-s + 3·4-s − 4·8-s + 9-s + 2·13-s + 5·16-s + 2·17-s − 2·18-s + 2·25-s − 4·26-s − 6·32-s − 4·34-s + 3·36-s − 4·50-s + 6·52-s − 2·53-s + 7·64-s + 6·68-s − 4·72-s + 2·89-s + 6·100-s − 4·101-s − 8·104-s + 4·106-s + 2·117-s + 121-s + 127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11102224 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11102224 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(11102224\)    =    \(2^{4} \cdot 7^{4} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(2.76518\)
Root analytic conductor: \(1.28952\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 11102224,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8765862764\)
\(L(\frac12)\) \(\approx\) \(0.8765862764\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
7 \( 1 \)
17$C_1$ \( ( 1 - T )^{2} \)
good3$C_2^2$ \( 1 - T^{2} + T^{4} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
11$C_2^2$ \( 1 - T^{2} + T^{4} \)
13$C_2$ \( ( 1 - T + T^{2} )^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_2$ \( ( 1 + T^{2} )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_2$ \( ( 1 + T + T^{2} )^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
67$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
71$C_2^2$ \( 1 - T^{2} + T^{4} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
79$C_2^2$ \( 1 - T^{2} + T^{4} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_2$ \( ( 1 - T + T^{2} )^{2} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.973293562638251319724270053544, −8.620933075111954257645631536986, −8.200686561090330194341197503467, −8.056522561671168512024461503494, −7.68363495275501182808579406818, −7.10350550302749743541646205977, −7.03636006340168503341862007103, −6.52341598717714413264105181402, −6.07660500680430133180969592635, −5.98925987369782933819195683307, −5.31004788033584759314288198884, −4.98726622899125756363525248303, −4.21815871410334199376265175633, −3.64031054439535941364333605260, −3.29416024314644885509815301305, −3.00803724595188655270512892113, −2.34786515678965719531469512308, −1.54204151387104326027237222343, −1.28017951305091991985577267014, −0.960671531228963139956870116350, 0.960671531228963139956870116350, 1.28017951305091991985577267014, 1.54204151387104326027237222343, 2.34786515678965719531469512308, 3.00803724595188655270512892113, 3.29416024314644885509815301305, 3.64031054439535941364333605260, 4.21815871410334199376265175633, 4.98726622899125756363525248303, 5.31004788033584759314288198884, 5.98925987369782933819195683307, 6.07660500680430133180969592635, 6.52341598717714413264105181402, 7.03636006340168503341862007103, 7.10350550302749743541646205977, 7.68363495275501182808579406818, 8.056522561671168512024461503494, 8.200686561090330194341197503467, 8.620933075111954257645631536986, 8.973293562638251319724270053544

Graph of the $Z$-function along the critical line