L(s) = 1 | + 5-s + 2·7-s + 6·13-s + 14·17-s + 14·19-s − 7·23-s − 6·29-s − 3·31-s + 2·35-s − 12·37-s − 4·41-s − 8·43-s + 4·47-s + 7·49-s − 10·53-s − 6·59-s + 3·61-s + 6·65-s + 10·67-s + 24·71-s + 32·73-s − 79-s − 9·83-s + 14·85-s − 8·89-s + 12·91-s + 14·95-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 0.755·7-s + 1.66·13-s + 3.39·17-s + 3.21·19-s − 1.45·23-s − 1.11·29-s − 0.538·31-s + 0.338·35-s − 1.97·37-s − 0.624·41-s − 1.21·43-s + 0.583·47-s + 49-s − 1.37·53-s − 0.781·59-s + 0.384·61-s + 0.744·65-s + 1.22·67-s + 2.84·71-s + 3.74·73-s − 0.112·79-s − 0.987·83-s + 1.51·85-s − 0.847·89-s + 1.25·91-s + 1.43·95-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(5.331738795\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.331738795\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | | \( 1 \) |
| 5 | $C_2$ | \( 1 - T + T^{2} \) |
good | 7 | $C_2^2$ | \( 1 - 2 T - 3 T^{2} - 2 p T^{3} + p^{2} T^{4} \) |
| 11 | $C_2^2$ | \( 1 - p T^{2} + p^{2} T^{4} \) |
| 13 | $C_2^2$ | \( 1 - 6 T + 23 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 17 | $C_2$ | \( ( 1 - 7 T + p T^{2} )^{2} \) |
| 19 | $C_2$ | \( ( 1 - 7 T + p T^{2} )^{2} \) |
| 23 | $C_2^2$ | \( 1 + 7 T + 26 T^{2} + 7 p T^{3} + p^{2} T^{4} \) |
| 29 | $C_2^2$ | \( 1 + 6 T + 7 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 31 | $C_2^2$ | \( 1 + 3 T - 22 T^{2} + 3 p T^{3} + p^{2} T^{4} \) |
| 37 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 41 | $C_2^2$ | \( 1 + 4 T - 25 T^{2} + 4 p T^{3} + p^{2} T^{4} \) |
| 43 | $C_2$ | \( ( 1 - 5 T + p T^{2} )( 1 + 13 T + p T^{2} ) \) |
| 47 | $C_2^2$ | \( 1 - 4 T - 31 T^{2} - 4 p T^{3} + p^{2} T^{4} \) |
| 53 | $C_2$ | \( ( 1 + 5 T + p T^{2} )^{2} \) |
| 59 | $C_2^2$ | \( 1 + 6 T - 23 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 61 | $C_2^2$ | \( 1 - 3 T - 52 T^{2} - 3 p T^{3} + p^{2} T^{4} \) |
| 67 | $C_2^2$ | \( 1 - 10 T + 33 T^{2} - 10 p T^{3} + p^{2} T^{4} \) |
| 71 | $C_2$ | \( ( 1 - 12 T + p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 - 16 T + p T^{2} )^{2} \) |
| 79 | $C_2^2$ | \( 1 + T - 78 T^{2} + p T^{3} + p^{2} T^{4} \) |
| 83 | $C_2^2$ | \( 1 + 9 T - 2 T^{2} + 9 p T^{3} + p^{2} T^{4} \) |
| 89 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 97 | $C_2^2$ | \( 1 - 16 T + 159 T^{2} - 16 p T^{3} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.645056597312782358062323748869, −8.451659412786848327973492643791, −7.938982820141644406833992380808, −7.889871179447226501993421457074, −7.37468764244695724052393142993, −7.18217105161627753759527882209, −6.55422510419272755035961748222, −6.06027471198198289740930481213, −5.65771761174981089982074949307, −5.40800091009319753371250765394, −5.22574979274172579226159946548, −4.90041531420908580183324751915, −3.84390215677984779011606653403, −3.62419632611300659058531839053, −3.30909039291830617980713266152, −3.21314298034999413343180849806, −1.95005600693802729060898423601, −1.83557380284143849680891655418, −1.06672505350067614836791233750, −0.903346765991348911470250951074,
0.903346765991348911470250951074, 1.06672505350067614836791233750, 1.83557380284143849680891655418, 1.95005600693802729060898423601, 3.21314298034999413343180849806, 3.30909039291830617980713266152, 3.62419632611300659058531839053, 3.84390215677984779011606653403, 4.90041531420908580183324751915, 5.22574979274172579226159946548, 5.40800091009319753371250765394, 5.65771761174981089982074949307, 6.06027471198198289740930481213, 6.55422510419272755035961748222, 7.18217105161627753759527882209, 7.37468764244695724052393142993, 7.889871179447226501993421457074, 7.938982820141644406833992380808, 8.451659412786848327973492643791, 8.645056597312782358062323748869