L(s) = 1 | + 2·5-s + 7-s + 5·11-s + 5·13-s + 4·17-s + 2·19-s − 7·23-s + 3·25-s + 5·29-s + 5·31-s + 2·35-s − 6·37-s + 8·43-s + 5·47-s + 49-s + 9·53-s + 10·55-s − 26·59-s + 2·61-s + 10·65-s − 14·67-s − 9·71-s + 5·77-s + 6·79-s + 10·83-s + 8·85-s + 3·89-s + ⋯ |
L(s) = 1 | + 0.894·5-s + 0.377·7-s + 1.50·11-s + 1.38·13-s + 0.970·17-s + 0.458·19-s − 1.45·23-s + 3/5·25-s + 0.928·29-s + 0.898·31-s + 0.338·35-s − 0.986·37-s + 1.21·43-s + 0.729·47-s + 1/7·49-s + 1.23·53-s + 1.34·55-s − 3.38·59-s + 0.256·61-s + 1.24·65-s − 1.71·67-s − 1.06·71-s + 0.569·77-s + 0.675·79-s + 1.09·83-s + 0.867·85-s + 0.317·89-s + ⋯ |
Λ(s)=(=(10497600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(10497600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
10497600
= 26⋅38⋅52
|
Sign: |
1
|
Analytic conductor: |
669.336 |
Root analytic conductor: |
5.08640 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 10497600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
5.356661242 |
L(21) |
≈ |
5.356661242 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C1 | (1−T)2 |
good | 7 | D4 | 1−T−pT3+p2T4 |
| 11 | C22 | 1−5T+14T2−5pT3+p2T4 |
| 13 | D4 | 1−5T+18T2−5pT3+p2T4 |
| 17 | C2 | (1−2T+pT2)2 |
| 19 | C2 | (1−T+pT2)2 |
| 23 | D4 | 1+7T+44T2+7pT3+p2T4 |
| 29 | D4 | 1−5T+50T2−5pT3+p2T4 |
| 31 | D4 | 1−5T+54T2−5pT3+p2T4 |
| 37 | D4 | 1+6T+26T2+6pT3+p2T4 |
| 41 | C22 | 1+25T2+p2T4 |
| 43 | C2 | (1−4T+pT2)2 |
| 47 | D4 | 1−5T+86T2−5pT3+p2T4 |
| 53 | D4 | 1−9T+112T2−9pT3+p2T4 |
| 59 | C2 | (1+13T+pT2)2 |
| 61 | D4 | 1−2T+66T2−2pT3+p2T4 |
| 67 | D4 | 1+14T+126T2+14pT3+p2T4 |
| 71 | D4 | 1+9T+148T2+9pT3+p2T4 |
| 73 | C22 | 1−82T2+p2T4 |
| 79 | D4 | 1−6T+110T2−6pT3+p2T4 |
| 83 | D4 | 1−10T+134T2−10pT3+p2T4 |
| 89 | D4 | 1−3T+52T2−3pT3+p2T4 |
| 97 | C2 | (1−16T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.857449078695155521324121511884, −8.720762709195757263662235507376, −7.917225906548906442004130191206, −7.87589259388261715397818721514, −7.40472637544268798116812868346, −6.93137968145181140621046171731, −6.35870535421854895138558621178, −6.17766391193468089129121537353, −5.93421836585419308708142466618, −5.66778610808101394820397488795, −4.85053597454650241862841687672, −4.73688837916018369756851686823, −4.06095534746289918622858142520, −3.84430790532800964179544769989, −3.16432154335307708493304060967, −3.02314884188694069630644257720, −2.03295347094569248608226426374, −1.82764502667012712630972120616, −1.13902324336306079739609225599, −0.844460583937210432502758867826,
0.844460583937210432502758867826, 1.13902324336306079739609225599, 1.82764502667012712630972120616, 2.03295347094569248608226426374, 3.02314884188694069630644257720, 3.16432154335307708493304060967, 3.84430790532800964179544769989, 4.06095534746289918622858142520, 4.73688837916018369756851686823, 4.85053597454650241862841687672, 5.66778610808101394820397488795, 5.93421836585419308708142466618, 6.17766391193468089129121537353, 6.35870535421854895138558621178, 6.93137968145181140621046171731, 7.40472637544268798116812868346, 7.87589259388261715397818721514, 7.917225906548906442004130191206, 8.720762709195757263662235507376, 8.857449078695155521324121511884