L(s) = 1 | − 5-s − 4·7-s + 6·13-s + 4·17-s + 8·19-s − 8·23-s − 6·29-s + 4·35-s − 12·37-s + 10·41-s + 4·43-s + 8·47-s + 7·49-s − 20·53-s − 6·61-s − 6·65-s + 4·67-s − 28·73-s − 16·79-s + 12·83-s − 4·85-s − 4·89-s − 24·91-s − 8·95-s − 2·97-s − 14·101-s − 4·103-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 1.51·7-s + 1.66·13-s + 0.970·17-s + 1.83·19-s − 1.66·23-s − 1.11·29-s + 0.676·35-s − 1.97·37-s + 1.56·41-s + 0.609·43-s + 1.16·47-s + 49-s − 2.74·53-s − 0.768·61-s − 0.744·65-s + 0.488·67-s − 3.27·73-s − 1.80·79-s + 1.31·83-s − 0.433·85-s − 0.423·89-s − 2.51·91-s − 0.820·95-s − 0.203·97-s − 1.39·101-s − 0.394·103-s + ⋯ |
Λ(s)=(=(10497600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(10497600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
10497600
= 26⋅38⋅52
|
Sign: |
1
|
Analytic conductor: |
669.336 |
Root analytic conductor: |
5.08640 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 10497600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.8690323702 |
L(21) |
≈ |
0.8690323702 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C2 | 1+T+T2 |
good | 7 | C2 | (1−T+pT2)(1+5T+pT2) |
| 11 | C22 | 1−pT2+p2T4 |
| 13 | C22 | 1−6T+23T2−6pT3+p2T4 |
| 17 | C2 | (1−2T+pT2)2 |
| 19 | C2 | (1−4T+pT2)2 |
| 23 | C22 | 1+8T+41T2+8pT3+p2T4 |
| 29 | C22 | 1+6T+7T2+6pT3+p2T4 |
| 31 | C22 | 1−pT2+p2T4 |
| 37 | C2 | (1+6T+pT2)2 |
| 41 | C22 | 1−10T+59T2−10pT3+p2T4 |
| 43 | C22 | 1−4T−27T2−4pT3+p2T4 |
| 47 | C22 | 1−8T+17T2−8pT3+p2T4 |
| 53 | C2 | (1+10T+pT2)2 |
| 59 | C22 | 1−pT2+p2T4 |
| 61 | C22 | 1+6T−25T2+6pT3+p2T4 |
| 67 | C22 | 1−4T−51T2−4pT3+p2T4 |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1+14T+pT2)2 |
| 79 | C22 | 1+16T+177T2+16pT3+p2T4 |
| 83 | C22 | 1−12T+61T2−12pT3+p2T4 |
| 89 | C2 | (1+2T+pT2)2 |
| 97 | C22 | 1+2T−93T2+2pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.879165441675549819162479000339, −8.486890620499976171795781357785, −8.019354862040483284786881520762, −7.66709261725692101914901298622, −7.43256133003818657128492178788, −7.03743928303854781838466860022, −6.56385533080558562704276352189, −5.99508919014626089323380956792, −5.97533616059358178362659850069, −5.55916685728081394932689784937, −5.22156391908365394800213222384, −4.25774743919011393031473327542, −4.22526218927235616495563985378, −3.52020820957182122929711149374, −3.40951499354888937676908472563, −3.03827374883899310747033426176, −2.46445452097762539289244494149, −1.40537062787603658694890605059, −1.40383064709506987211565168120, −0.30027630621290779772511235307,
0.30027630621290779772511235307, 1.40383064709506987211565168120, 1.40537062787603658694890605059, 2.46445452097762539289244494149, 3.03827374883899310747033426176, 3.40951499354888937676908472563, 3.52020820957182122929711149374, 4.22526218927235616495563985378, 4.25774743919011393031473327542, 5.22156391908365394800213222384, 5.55916685728081394932689784937, 5.97533616059358178362659850069, 5.99508919014626089323380956792, 6.56385533080558562704276352189, 7.03743928303854781838466860022, 7.43256133003818657128492178788, 7.66709261725692101914901298622, 8.019354862040483284786881520762, 8.486890620499976171795781357785, 8.879165441675549819162479000339