L(s) = 1 | + 5-s − 2·7-s + 11-s − 13-s + 2·17-s + 8·19-s + 23-s − 5·29-s − 31-s − 2·35-s + 12·37-s − 7·43-s + 7·47-s + 7·49-s + 24·53-s + 55-s − 4·59-s − 10·61-s − 65-s + 4·67-s − 24·71-s + 12·73-s − 2·77-s − 15·79-s + 2·83-s + 2·85-s + 24·89-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 0.755·7-s + 0.301·11-s − 0.277·13-s + 0.485·17-s + 1.83·19-s + 0.208·23-s − 0.928·29-s − 0.179·31-s − 0.338·35-s + 1.97·37-s − 1.06·43-s + 1.02·47-s + 49-s + 3.29·53-s + 0.134·55-s − 0.520·59-s − 1.28·61-s − 0.124·65-s + 0.488·67-s − 2.84·71-s + 1.40·73-s − 0.227·77-s − 1.68·79-s + 0.219·83-s + 0.216·85-s + 2.54·89-s + ⋯ |
Λ(s)=(=(10497600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(10497600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
10497600
= 26⋅38⋅52
|
Sign: |
1
|
Analytic conductor: |
669.336 |
Root analytic conductor: |
5.08640 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 10497600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.741263987 |
L(21) |
≈ |
2.741263987 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C2 | 1−T+T2 |
good | 7 | C22 | 1+2T−3T2+2pT3+p2T4 |
| 11 | C22 | 1−T−10T2−pT3+p2T4 |
| 13 | C22 | 1+T−12T2+pT3+p2T4 |
| 17 | C2 | (1−T+pT2)2 |
| 19 | C2 | (1−4T+pT2)2 |
| 23 | C22 | 1−T−22T2−pT3+p2T4 |
| 29 | C22 | 1+5T−4T2+5pT3+p2T4 |
| 31 | C22 | 1+T−30T2+pT3+p2T4 |
| 37 | C2 | (1−6T+pT2)2 |
| 41 | C22 | 1−pT2+p2T4 |
| 43 | C22 | 1+7T+6T2+7pT3+p2T4 |
| 47 | C22 | 1−7T+2T2−7pT3+p2T4 |
| 53 | C2 | (1−12T+pT2)2 |
| 59 | C22 | 1+4T−43T2+4pT3+p2T4 |
| 61 | C22 | 1+10T+39T2+10pT3+p2T4 |
| 67 | C22 | 1−4T−51T2−4pT3+p2T4 |
| 71 | C2 | (1+12T+pT2)2 |
| 73 | C2 | (1−6T+pT2)2 |
| 79 | C22 | 1+15T+146T2+15pT3+p2T4 |
| 83 | C22 | 1−2T−79T2−2pT3+p2T4 |
| 89 | C2 | (1−12T+pT2)2 |
| 97 | C22 | 1+10T+3T2+10pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.978996037818273424428764250109, −8.540223972768996793226948795706, −8.030931578743356619696315012254, −7.59762911680978690345969509947, −7.31804891056379523800901404089, −7.13283953037680506822708484828, −6.55536425793309974024182979886, −6.19879515558044651203530969823, −5.71957074898778087340546010500, −5.47748566771949301448685266056, −5.25117483585517765213115052153, −4.55833196703981417968026599152, −4.03304808304314484724377918909, −3.85022534545496910170789524940, −3.13818904541381699451621627970, −2.86739079588172408049261016459, −2.44945930128364634824539687876, −1.71498687479888353872801320952, −1.14665309631874332067934706220, −0.56611576397386358411542041566,
0.56611576397386358411542041566, 1.14665309631874332067934706220, 1.71498687479888353872801320952, 2.44945930128364634824539687876, 2.86739079588172408049261016459, 3.13818904541381699451621627970, 3.85022534545496910170789524940, 4.03304808304314484724377918909, 4.55833196703981417968026599152, 5.25117483585517765213115052153, 5.47748566771949301448685266056, 5.71957074898778087340546010500, 6.19879515558044651203530969823, 6.55536425793309974024182979886, 7.13283953037680506822708484828, 7.31804891056379523800901404089, 7.59762911680978690345969509947, 8.030931578743356619696315012254, 8.540223972768996793226948795706, 8.978996037818273424428764250109