L(s) = 1 | + 2·2-s + 3·4-s + 5-s + 4·8-s + 2·10-s + 5·16-s + 2·19-s + 3·20-s − 23-s − 3·31-s + 6·32-s + 4·38-s + 4·40-s − 2·46-s − 2·47-s + 49-s − 2·53-s + 3·61-s − 6·62-s + 7·64-s + 6·76-s − 3·79-s + 5·80-s − 3·83-s − 3·92-s − 4·94-s + 2·95-s + ⋯ |
L(s) = 1 | + 2·2-s + 3·4-s + 5-s + 4·8-s + 2·10-s + 5·16-s + 2·19-s + 3·20-s − 23-s − 3·31-s + 6·32-s + 4·38-s + 4·40-s − 2·46-s − 2·47-s + 49-s − 2·53-s + 3·61-s − 6·62-s + 7·64-s + 6·76-s − 3·79-s + 5·80-s − 3·83-s − 3·92-s − 4·94-s + 2·95-s + ⋯ |
Λ(s)=(=(10497600s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(10497600s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
10497600
= 26⋅38⋅52
|
Sign: |
1
|
Analytic conductor: |
2.61459 |
Root analytic conductor: |
1.27160 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 10497600, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
7.279079742 |
L(21) |
≈ |
7.279079742 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−T)2 |
| 3 | | 1 |
| 5 | C2 | 1−T+T2 |
good | 7 | C22 | 1−T2+T4 |
| 11 | C22 | 1−T2+T4 |
| 13 | C22 | 1−T2+T4 |
| 17 | C2 | (1−T+T2)(1+T+T2) |
| 19 | C2 | (1−T+T2)2 |
| 23 | C1×C2 | (1+T)2(1−T+T2) |
| 29 | C2 | (1−T+T2)(1+T+T2) |
| 31 | C1×C2 | (1+T)2(1+T+T2) |
| 37 | C2 | (1+T2)2 |
| 41 | C22 | 1−T2+T4 |
| 43 | C2 | (1−T+T2)(1+T+T2) |
| 47 | C2 | (1+T+T2)2 |
| 53 | C2 | (1+T+T2)2 |
| 59 | C22 | 1−T2+T4 |
| 61 | C1×C2 | (1−T)2(1−T+T2) |
| 67 | C2 | (1−T+T2)(1+T+T2) |
| 71 | C1×C1 | (1−T)2(1+T)2 |
| 73 | C1×C1 | (1−T)2(1+T)2 |
| 79 | C1×C2 | (1+T)2(1+T+T2) |
| 83 | C1×C2 | (1+T)2(1+T+T2) |
| 89 | C2 | (1+T2)2 |
| 97 | C2 | (1−T+T2)(1+T+T2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.985415510924040841652380932550, −8.644431530835748219528419054636, −8.013046953223404996845233618761, −7.71548024687354504338870134728, −7.22920137302163859514935722425, −7.19342726863504151283290926730, −6.58598200328578019443890668890, −6.27324337157929223761397343478, −5.75645420659034615353133038412, −5.57426773100597854767857035521, −5.15994669509305035617800269702, −5.13865282203846834763251167716, −4.25294712941792186571947289940, −4.02295480227100309543703328782, −3.55573528832098950261198487490, −3.12388743892840018489691919905, −2.74207081252684412975609324357, −2.15725181972387401659466000115, −1.56808751671950202533415454776, −1.46879081297093408809818655709,
1.46879081297093408809818655709, 1.56808751671950202533415454776, 2.15725181972387401659466000115, 2.74207081252684412975609324357, 3.12388743892840018489691919905, 3.55573528832098950261198487490, 4.02295480227100309543703328782, 4.25294712941792186571947289940, 5.13865282203846834763251167716, 5.15994669509305035617800269702, 5.57426773100597854767857035521, 5.75645420659034615353133038412, 6.27324337157929223761397343478, 6.58598200328578019443890668890, 7.19342726863504151283290926730, 7.22920137302163859514935722425, 7.71548024687354504338870134728, 8.013046953223404996845233618761, 8.644431530835748219528419054636, 8.985415510924040841652380932550