L(s) = 1 | − 2·2-s + 3·4-s + 2·5-s − 4·8-s − 4·10-s + 5·16-s + 2·19-s + 6·20-s − 2·23-s + 3·25-s − 6·32-s − 4·38-s − 8·40-s + 4·46-s + 2·47-s + 49-s − 6·50-s + 2·53-s + 7·64-s + 6·76-s + 10·80-s − 6·92-s − 4·94-s + 4·95-s − 2·98-s + 9·100-s − 4·106-s + ⋯ |
L(s) = 1 | − 2·2-s + 3·4-s + 2·5-s − 4·8-s − 4·10-s + 5·16-s + 2·19-s + 6·20-s − 2·23-s + 3·25-s − 6·32-s − 4·38-s − 8·40-s + 4·46-s + 2·47-s + 49-s − 6·50-s + 2·53-s + 7·64-s + 6·76-s + 10·80-s − 6·92-s − 4·94-s + 4·95-s − 2·98-s + 9·100-s − 4·106-s + ⋯ |
Λ(s)=(=(10497600s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(10497600s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
10497600
= 26⋅38⋅52
|
Sign: |
1
|
Analytic conductor: |
2.61459 |
Root analytic conductor: |
1.27160 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 10497600, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
1.003784537 |
L(21) |
≈ |
1.003784537 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+T)2 |
| 3 | | 1 |
| 5 | C1 | (1−T)2 |
good | 7 | C22 | 1−T2+T4 |
| 11 | C2 | (1+T2)2 |
| 13 | C22 | 1−T2+T4 |
| 17 | C1×C1 | (1−T)2(1+T)2 |
| 19 | C2 | (1−T+T2)2 |
| 23 | C2 | (1+T+T2)2 |
| 29 | C1×C1 | (1−T)2(1+T)2 |
| 31 | C1×C1 | (1−T)2(1+T)2 |
| 37 | C2 | (1+T2)2 |
| 41 | C22 | 1−T2+T4 |
| 43 | C1×C1 | (1−T)2(1+T)2 |
| 47 | C2 | (1−T+T2)2 |
| 53 | C2 | (1−T+T2)2 |
| 59 | C22 | 1−T2+T4 |
| 61 | C1×C1 | (1−T)2(1+T)2 |
| 67 | C1×C1 | (1−T)2(1+T)2 |
| 71 | C1×C1 | (1−T)2(1+T)2 |
| 73 | C1×C1 | (1−T)2(1+T)2 |
| 79 | C1×C1 | (1−T)2(1+T)2 |
| 83 | C1×C1 | (1−T)2(1+T)2 |
| 89 | C2 | (1+T2)2 |
| 97 | C1×C1 | (1−T)2(1+T)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.023133435735267180074635152507, −8.897890477540212442963696653360, −8.397375180912137666304748937216, −7.890029286948739667792957851102, −7.67849326775452767797140083068, −7.21853567200084208870066654996, −6.83242225115492755852226526122, −6.61138011113362149162249830833, −6.01154955992664242009573294743, −5.73557123231321272846006178503, −5.52496360970558548656805260817, −5.25536903506055819421618913054, −4.32749815004262421481440533971, −3.74303788260714063539041396806, −3.15290028292440029218077555315, −2.70217558363179904292694005913, −2.13504834424517437338992909118, −2.11926612017279930212291372171, −1.21051523781664732651206950632, −0.978875688099410759521335671866,
0.978875688099410759521335671866, 1.21051523781664732651206950632, 2.11926612017279930212291372171, 2.13504834424517437338992909118, 2.70217558363179904292694005913, 3.15290028292440029218077555315, 3.74303788260714063539041396806, 4.32749815004262421481440533971, 5.25536903506055819421618913054, 5.52496360970558548656805260817, 5.73557123231321272846006178503, 6.01154955992664242009573294743, 6.61138011113362149162249830833, 6.83242225115492755852226526122, 7.21853567200084208870066654996, 7.67849326775452767797140083068, 7.890029286948739667792957851102, 8.397375180912137666304748937216, 8.897890477540212442963696653360, 9.023133435735267180074635152507