Properties

Label 4-3240e2-1.1-c0e2-0-13
Degree $4$
Conductor $10497600$
Sign $1$
Analytic cond. $2.61459$
Root an. cond. $1.27160$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s + 2·5-s − 4·8-s − 4·10-s + 5·16-s + 2·19-s + 6·20-s − 2·23-s + 3·25-s − 6·32-s − 4·38-s − 8·40-s + 4·46-s + 2·47-s + 49-s − 6·50-s + 2·53-s + 7·64-s + 6·76-s + 10·80-s − 6·92-s − 4·94-s + 4·95-s − 2·98-s + 9·100-s − 4·106-s + ⋯
L(s)  = 1  − 2·2-s + 3·4-s + 2·5-s − 4·8-s − 4·10-s + 5·16-s + 2·19-s + 6·20-s − 2·23-s + 3·25-s − 6·32-s − 4·38-s − 8·40-s + 4·46-s + 2·47-s + 49-s − 6·50-s + 2·53-s + 7·64-s + 6·76-s + 10·80-s − 6·92-s − 4·94-s + 4·95-s − 2·98-s + 9·100-s − 4·106-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(10497600\)    =    \(2^{6} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2.61459\)
Root analytic conductor: \(1.27160\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 10497600,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.003784537\)
\(L(\frac12)\) \(\approx\) \(1.003784537\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3 \( 1 \)
5$C_1$ \( ( 1 - T )^{2} \)
good7$C_2^2$ \( 1 - T^{2} + T^{4} \)
11$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_2^2$ \( 1 - T^{2} + T^{4} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
19$C_2$ \( ( 1 - T + T^{2} )^{2} \)
23$C_2$ \( ( 1 + T + T^{2} )^{2} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
41$C_2^2$ \( 1 - T^{2} + T^{4} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
47$C_2$ \( ( 1 - T + T^{2} )^{2} \)
53$C_2$ \( ( 1 - T + T^{2} )^{2} \)
59$C_2^2$ \( 1 - T^{2} + T^{4} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
67$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_2$ \( ( 1 + T^{2} )^{2} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.023133435735267180074635152507, −8.897890477540212442963696653360, −8.397375180912137666304748937216, −7.890029286948739667792957851102, −7.67849326775452767797140083068, −7.21853567200084208870066654996, −6.83242225115492755852226526122, −6.61138011113362149162249830833, −6.01154955992664242009573294743, −5.73557123231321272846006178503, −5.52496360970558548656805260817, −5.25536903506055819421618913054, −4.32749815004262421481440533971, −3.74303788260714063539041396806, −3.15290028292440029218077555315, −2.70217558363179904292694005913, −2.13504834424517437338992909118, −2.11926612017279930212291372171, −1.21051523781664732651206950632, −0.978875688099410759521335671866, 0.978875688099410759521335671866, 1.21051523781664732651206950632, 2.11926612017279930212291372171, 2.13504834424517437338992909118, 2.70217558363179904292694005913, 3.15290028292440029218077555315, 3.74303788260714063539041396806, 4.32749815004262421481440533971, 5.25536903506055819421618913054, 5.52496360970558548656805260817, 5.73557123231321272846006178503, 6.01154955992664242009573294743, 6.61138011113362149162249830833, 6.83242225115492755852226526122, 7.21853567200084208870066654996, 7.67849326775452767797140083068, 7.890029286948739667792957851102, 8.397375180912137666304748937216, 8.897890477540212442963696653360, 9.023133435735267180074635152507

Graph of the $Z$-function along the critical line