Properties

Label 4-3240e2-1.1-c0e2-0-10
Degree $4$
Conductor $10497600$
Sign $1$
Analytic cond. $2.61459$
Root an. cond. $1.27160$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 5-s − 8-s − 10-s − 16-s + 2·19-s + 23-s + 3·31-s + 2·38-s + 40-s + 46-s + 2·47-s + 49-s + 2·53-s − 3·61-s + 3·62-s + 64-s + 3·79-s + 80-s − 3·83-s + 2·94-s − 2·95-s + 98-s + 2·106-s − 115-s + 121-s − 3·122-s + ⋯
L(s)  = 1  + 2-s − 5-s − 8-s − 10-s − 16-s + 2·19-s + 23-s + 3·31-s + 2·38-s + 40-s + 46-s + 2·47-s + 49-s + 2·53-s − 3·61-s + 3·62-s + 64-s + 3·79-s + 80-s − 3·83-s + 2·94-s − 2·95-s + 98-s + 2·106-s − 115-s + 121-s − 3·122-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(10497600\)    =    \(2^{6} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2.61459\)
Root analytic conductor: \(1.27160\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 10497600,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.829421624\)
\(L(\frac12)\) \(\approx\) \(1.829421624\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 + T + T^{2} \)
good7$C_2^2$ \( 1 - T^{2} + T^{4} \)
11$C_2^2$ \( 1 - T^{2} + T^{4} \)
13$C_2^2$ \( 1 - T^{2} + T^{4} \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_2$ \( ( 1 - T + T^{2} )^{2} \)
23$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
41$C_2^2$ \( 1 - T^{2} + T^{4} \)
43$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
47$C_2$ \( ( 1 - T + T^{2} )^{2} \)
53$C_2$ \( ( 1 - T + T^{2} )^{2} \)
59$C_2^2$ \( 1 - T^{2} + T^{4} \)
61$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
79$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
83$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
89$C_2$ \( ( 1 + T^{2} )^{2} \)
97$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.872271334701190448041472904085, −8.811558973847702002655833772939, −8.186860105875462530177872551970, −7.83742917416974922249155223262, −7.50192707701956675179681701891, −7.21109525321414142132101978870, −6.72186047110978722716552833667, −6.37538762640902366912605595907, −5.78625466329583375377506267025, −5.63689739952118966535027718403, −5.12441084845364472506472216577, −4.68556014356963110531476053953, −4.44139765229329629851185928633, −3.99993929063249794312464487497, −3.55801591570220950716833100703, −3.17829903633742274743160476213, −2.65501909914820034429238370499, −2.48135939208053609214986728750, −1.21172007572193496484057924199, −0.827728302549680570199567503576, 0.827728302549680570199567503576, 1.21172007572193496484057924199, 2.48135939208053609214986728750, 2.65501909914820034429238370499, 3.17829903633742274743160476213, 3.55801591570220950716833100703, 3.99993929063249794312464487497, 4.44139765229329629851185928633, 4.68556014356963110531476053953, 5.12441084845364472506472216577, 5.63689739952118966535027718403, 5.78625466329583375377506267025, 6.37538762640902366912605595907, 6.72186047110978722716552833667, 7.21109525321414142132101978870, 7.50192707701956675179681701891, 7.83742917416974922249155223262, 8.186860105875462530177872551970, 8.811558973847702002655833772939, 8.872271334701190448041472904085

Graph of the $Z$-function along the critical line