L(s) = 1 | + 2-s − 5-s − 8-s − 10-s − 16-s + 2·19-s + 23-s + 3·31-s + 2·38-s + 40-s + 46-s + 2·47-s + 49-s + 2·53-s − 3·61-s + 3·62-s + 64-s + 3·79-s + 80-s − 3·83-s + 2·94-s − 2·95-s + 98-s + 2·106-s − 115-s + 121-s − 3·122-s + ⋯ |
L(s) = 1 | + 2-s − 5-s − 8-s − 10-s − 16-s + 2·19-s + 23-s + 3·31-s + 2·38-s + 40-s + 46-s + 2·47-s + 49-s + 2·53-s − 3·61-s + 3·62-s + 64-s + 3·79-s + 80-s − 3·83-s + 2·94-s − 2·95-s + 98-s + 2·106-s − 115-s + 121-s − 3·122-s + ⋯ |
Λ(s)=(=(10497600s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(10497600s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
10497600
= 26⋅38⋅52
|
Sign: |
1
|
Analytic conductor: |
2.61459 |
Root analytic conductor: |
1.27160 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 10497600, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
1.829421624 |
L(21) |
≈ |
1.829421624 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−T+T2 |
| 3 | | 1 |
| 5 | C2 | 1+T+T2 |
good | 7 | C22 | 1−T2+T4 |
| 11 | C22 | 1−T2+T4 |
| 13 | C22 | 1−T2+T4 |
| 17 | C2 | (1−T+T2)(1+T+T2) |
| 19 | C2 | (1−T+T2)2 |
| 23 | C1×C2 | (1−T)2(1+T+T2) |
| 29 | C2 | (1−T+T2)(1+T+T2) |
| 31 | C1×C2 | (1−T)2(1−T+T2) |
| 37 | C2 | (1+T2)2 |
| 41 | C22 | 1−T2+T4 |
| 43 | C2 | (1−T+T2)(1+T+T2) |
| 47 | C2 | (1−T+T2)2 |
| 53 | C2 | (1−T+T2)2 |
| 59 | C22 | 1−T2+T4 |
| 61 | C1×C2 | (1+T)2(1+T+T2) |
| 67 | C2 | (1−T+T2)(1+T+T2) |
| 71 | C1×C1 | (1−T)2(1+T)2 |
| 73 | C1×C1 | (1−T)2(1+T)2 |
| 79 | C1×C2 | (1−T)2(1−T+T2) |
| 83 | C1×C2 | (1+T)2(1+T+T2) |
| 89 | C2 | (1+T2)2 |
| 97 | C2 | (1−T+T2)(1+T+T2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.872271334701190448041472904085, −8.811558973847702002655833772939, −8.186860105875462530177872551970, −7.83742917416974922249155223262, −7.50192707701956675179681701891, −7.21109525321414142132101978870, −6.72186047110978722716552833667, −6.37538762640902366912605595907, −5.78625466329583375377506267025, −5.63689739952118966535027718403, −5.12441084845364472506472216577, −4.68556014356963110531476053953, −4.44139765229329629851185928633, −3.99993929063249794312464487497, −3.55801591570220950716833100703, −3.17829903633742274743160476213, −2.65501909914820034429238370499, −2.48135939208053609214986728750, −1.21172007572193496484057924199, −0.827728302549680570199567503576,
0.827728302549680570199567503576, 1.21172007572193496484057924199, 2.48135939208053609214986728750, 2.65501909914820034429238370499, 3.17829903633742274743160476213, 3.55801591570220950716833100703, 3.99993929063249794312464487497, 4.44139765229329629851185928633, 4.68556014356963110531476053953, 5.12441084845364472506472216577, 5.63689739952118966535027718403, 5.78625466329583375377506267025, 6.37538762640902366912605595907, 6.72186047110978722716552833667, 7.21109525321414142132101978870, 7.50192707701956675179681701891, 7.83742917416974922249155223262, 8.186860105875462530177872551970, 8.811558973847702002655833772939, 8.872271334701190448041472904085