Properties

Label 4-32000-1.1-c1e2-0-2
Degree $4$
Conductor $32000$
Sign $1$
Analytic cond. $2.04034$
Root an. cond. $1.19515$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 6·9-s + 25-s − 4·29-s + 12·41-s − 6·45-s − 2·49-s + 4·61-s + 27·81-s − 12·89-s + 12·101-s − 28·109-s − 6·121-s − 125-s + 127-s + 131-s + 137-s + 139-s + 4·145-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + 173-s + 179-s + ⋯
L(s)  = 1  − 0.447·5-s + 2·9-s + 1/5·25-s − 0.742·29-s + 1.87·41-s − 0.894·45-s − 2/7·49-s + 0.512·61-s + 3·81-s − 1.27·89-s + 1.19·101-s − 2.68·109-s − 0.545·121-s − 0.0894·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.332·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + 0.0760·173-s + 0.0747·179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(32000\)    =    \(2^{8} \cdot 5^{3}\)
Sign: $1$
Analytic conductor: \(2.04034\)
Root analytic conductor: \(1.19515\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 32000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.340249496\)
\(L(\frac12)\) \(\approx\) \(1.340249496\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( 1 + T \)
good3$C_2$ \( ( 1 - p T^{2} )^{2} \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 78 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 90 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.45635555895123398508616992264, −9.932807738951225402896384329207, −9.440574375670347063720129211679, −9.067838966976968249797003880438, −8.176970332316499283761017873268, −7.76702746734900361151457450826, −7.20137597437398225607662382241, −6.85444202581638370159310745997, −6.12074514811380938963071814274, −5.36548914818550921723419960819, −4.57309836509969959885811026572, −4.14489874143322088321845955968, −3.51023978075085753955621242562, −2.34824788381240391505005522266, −1.26603240808509178112653247284, 1.26603240808509178112653247284, 2.34824788381240391505005522266, 3.51023978075085753955621242562, 4.14489874143322088321845955968, 4.57309836509969959885811026572, 5.36548914818550921723419960819, 6.12074514811380938963071814274, 6.85444202581638370159310745997, 7.20137597437398225607662382241, 7.76702746734900361151457450826, 8.176970332316499283761017873268, 9.067838966976968249797003880438, 9.440574375670347063720129211679, 9.932807738951225402896384329207, 10.45635555895123398508616992264

Graph of the $Z$-function along the critical line