Properties

Label 4-32000-1.1-c1e2-0-2
Degree 44
Conductor 3200032000
Sign 11
Analytic cond. 2.040342.04034
Root an. cond. 1.195151.19515
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 6·9-s + 25-s − 4·29-s + 12·41-s − 6·45-s − 2·49-s + 4·61-s + 27·81-s − 12·89-s + 12·101-s − 28·109-s − 6·121-s − 125-s + 127-s + 131-s + 137-s + 139-s + 4·145-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + 173-s + 179-s + ⋯
L(s)  = 1  − 0.447·5-s + 2·9-s + 1/5·25-s − 0.742·29-s + 1.87·41-s − 0.894·45-s − 2/7·49-s + 0.512·61-s + 3·81-s − 1.27·89-s + 1.19·101-s − 2.68·109-s − 0.545·121-s − 0.0894·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.332·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + 0.0760·173-s + 0.0747·179-s + ⋯

Functional equation

Λ(s)=(32000s/2ΓC(s)2L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 32000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(32000s/2ΓC(s+1/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 32000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 3200032000    =    28532^{8} \cdot 5^{3}
Sign: 11
Analytic conductor: 2.040342.04034
Root analytic conductor: 1.195151.19515
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (4, 32000, ( :1/2,1/2), 1)(4,\ 32000,\ (\ :1/2, 1/2),\ 1)

Particular Values

L(1)L(1) \approx 1.3402494961.340249496
L(12)L(\frac12) \approx 1.3402494961.340249496
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
5C1C_1 1+T 1 + T
good3C2C_2 (1pT2)2 ( 1 - p T^{2} )^{2}
7C22C_2^2 1+2T2+p2T4 1 + 2 T^{2} + p^{2} T^{4}
11C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
13C2C_2 (12T+pT2)(1+2T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )
17C2C_2 (12T+pT2)(1+2T+pT2) ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} )
19C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
23C22C_2^2 130T2+p2T4 1 - 30 T^{2} + p^{2} T^{4}
29C2C_2 (1+2T+pT2)2 ( 1 + 2 T + p T^{2} )^{2}
31C2C_2 (18T+pT2)(1+8T+pT2) ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} )
37C2C_2 (16T+pT2)(1+6T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )
41C2C_2 (16T+pT2)2 ( 1 - 6 T + p T^{2} )^{2}
43C22C_2^2 122T2+p2T4 1 - 22 T^{2} + p^{2} T^{4}
47C22C_2^2 178T2+p2T4 1 - 78 T^{2} + p^{2} T^{4}
53C2C_2 (16T+pT2)(1+6T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )
59C2C_2 (14T+pT2)(1+4T+pT2) ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} )
61C2C_2 (12T+pT2)2 ( 1 - 2 T + p T^{2} )^{2}
67C22C_2^2 170T2+p2T4 1 - 70 T^{2} + p^{2} T^{4}
71C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
73C2C_2 (16T+pT2)(1+6T+pT2) ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )
79C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
83C22C_2^2 1+90T2+p2T4 1 + 90 T^{2} + p^{2} T^{4}
89C2C_2 (1+6T+pT2)2 ( 1 + 6 T + p T^{2} )^{2}
97C2C_2 (114T+pT2)(1+14T+pT2) ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} )
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.45635555895123398508616992264, −9.932807738951225402896384329207, −9.440574375670347063720129211679, −9.067838966976968249797003880438, −8.176970332316499283761017873268, −7.76702746734900361151457450826, −7.20137597437398225607662382241, −6.85444202581638370159310745997, −6.12074514811380938963071814274, −5.36548914818550921723419960819, −4.57309836509969959885811026572, −4.14489874143322088321845955968, −3.51023978075085753955621242562, −2.34824788381240391505005522266, −1.26603240808509178112653247284, 1.26603240808509178112653247284, 2.34824788381240391505005522266, 3.51023978075085753955621242562, 4.14489874143322088321845955968, 4.57309836509969959885811026572, 5.36548914818550921723419960819, 6.12074514811380938963071814274, 6.85444202581638370159310745997, 7.20137597437398225607662382241, 7.76702746734900361151457450826, 8.176970332316499283761017873268, 9.067838966976968249797003880438, 9.440574375670347063720129211679, 9.932807738951225402896384329207, 10.45635555895123398508616992264

Graph of the ZZ-function along the critical line