L(s) = 1 | + 2·5-s − 6·9-s − 4·13-s + 4·17-s + 3·25-s − 4·29-s + 12·37-s − 12·41-s − 12·45-s + 2·49-s + 12·53-s − 4·61-s − 8·65-s − 12·73-s + 27·81-s + 8·85-s − 12·89-s − 28·97-s + 12·101-s + 28·109-s + 36·113-s + 24·117-s − 6·121-s + 4·125-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 2·9-s − 1.10·13-s + 0.970·17-s + 3/5·25-s − 0.742·29-s + 1.97·37-s − 1.87·41-s − 1.78·45-s + 2/7·49-s + 1.64·53-s − 0.512·61-s − 0.992·65-s − 1.40·73-s + 3·81-s + 0.867·85-s − 1.27·89-s − 2.84·97-s + 1.19·101-s + 2.68·109-s + 3.38·113-s + 2.21·117-s − 0.545·121-s + 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
Λ(s)=(=(3200s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(3200s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
3200
= 27⋅52
|
Sign: |
1
|
Analytic conductor: |
0.204034 |
Root analytic conductor: |
0.672087 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 3200, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.7492222454 |
L(21) |
≈ |
0.7492222454 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1 | (1−T)2 |
good | 3 | C2 | (1+pT2)2 |
| 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2 | (1+2T+pT2)2 |
| 17 | C2 | (1−2T+pT2)2 |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2 | (1+2T+pT2)2 |
| 31 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 37 | C2 | (1−6T+pT2)2 |
| 41 | C2 | (1+6T+pT2)2 |
| 43 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 47 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 61 | C2 | (1+2T+pT2)2 |
| 67 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1+6T+pT2)2 |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C2 | (1+14T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.70951559228550877361223816630, −12.13050487476073915971902909987, −11.52426214006865205005559601963, −11.11321493608157697547696196545, −10.12246838996141367241613997715, −9.851840183892789826086741161768, −9.022035638415746178025932660186, −8.521590142691914902934262227672, −7.75327442992794184642667314086, −6.97238544391138654785050907556, −5.84906736542976130410760055690, −5.70093888866808737514223874840, −4.76905661119552301505559653794, −3.26180587408034592610487247010, −2.39961978181641342090490014624,
2.39961978181641342090490014624, 3.26180587408034592610487247010, 4.76905661119552301505559653794, 5.70093888866808737514223874840, 5.84906736542976130410760055690, 6.97238544391138654785050907556, 7.75327442992794184642667314086, 8.521590142691914902934262227672, 9.022035638415746178025932660186, 9.851840183892789826086741161768, 10.12246838996141367241613997715, 11.11321493608157697547696196545, 11.52426214006865205005559601963, 12.13050487476073915971902909987, 12.70951559228550877361223816630