Properties

Label 4-3200-1.1-c1e2-0-2
Degree $4$
Conductor $3200$
Sign $1$
Analytic cond. $0.204034$
Root an. cond. $0.672087$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 6·9-s − 4·13-s + 4·17-s + 3·25-s − 4·29-s + 12·37-s − 12·41-s − 12·45-s + 2·49-s + 12·53-s − 4·61-s − 8·65-s − 12·73-s + 27·81-s + 8·85-s − 12·89-s − 28·97-s + 12·101-s + 28·109-s + 36·113-s + 24·117-s − 6·121-s + 4·125-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  + 0.894·5-s − 2·9-s − 1.10·13-s + 0.970·17-s + 3/5·25-s − 0.742·29-s + 1.97·37-s − 1.87·41-s − 1.78·45-s + 2/7·49-s + 1.64·53-s − 0.512·61-s − 0.992·65-s − 1.40·73-s + 3·81-s + 0.867·85-s − 1.27·89-s − 2.84·97-s + 1.19·101-s + 2.68·109-s + 3.38·113-s + 2.21·117-s − 0.545·121-s + 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3200 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3200 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3200\)    =    \(2^{7} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(0.204034\)
Root analytic conductor: \(0.672087\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3200,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7492222454\)
\(L(\frac12)\) \(\approx\) \(0.7492222454\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 - T )^{2} \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.70951559228550877361223816630, −12.13050487476073915971902909987, −11.52426214006865205005559601963, −11.11321493608157697547696196545, −10.12246838996141367241613997715, −9.851840183892789826086741161768, −9.022035638415746178025932660186, −8.521590142691914902934262227672, −7.75327442992794184642667314086, −6.97238544391138654785050907556, −5.84906736542976130410760055690, −5.70093888866808737514223874840, −4.76905661119552301505559653794, −3.26180587408034592610487247010, −2.39961978181641342090490014624, 2.39961978181641342090490014624, 3.26180587408034592610487247010, 4.76905661119552301505559653794, 5.70093888866808737514223874840, 5.84906736542976130410760055690, 6.97238544391138654785050907556, 7.75327442992794184642667314086, 8.521590142691914902934262227672, 9.022035638415746178025932660186, 9.851840183892789826086741161768, 10.12246838996141367241613997715, 11.11321493608157697547696196545, 11.52426214006865205005559601963, 12.13050487476073915971902909987, 12.70951559228550877361223816630

Graph of the $Z$-function along the critical line