L(s) = 1 | − 3·5-s + 2·11-s + 4·13-s − 6·17-s − 6·19-s − 3·23-s + 25-s − 6·29-s + 15·31-s + 37-s − 6·43-s − 8·47-s − 14·49-s − 6·55-s − 13·59-s − 6·61-s − 12·65-s − 3·67-s + 19·71-s − 12·73-s + 18·79-s + 2·83-s + 18·85-s + 3·89-s + 18·95-s − 97-s − 18·101-s + ⋯ |
L(s) = 1 | − 1.34·5-s + 0.603·11-s + 1.10·13-s − 1.45·17-s − 1.37·19-s − 0.625·23-s + 1/5·25-s − 1.11·29-s + 2.69·31-s + 0.164·37-s − 0.914·43-s − 1.16·47-s − 2·49-s − 0.809·55-s − 1.69·59-s − 0.768·61-s − 1.48·65-s − 0.366·67-s + 2.25·71-s − 1.40·73-s + 2.02·79-s + 0.219·83-s + 1.95·85-s + 0.317·89-s + 1.84·95-s − 0.101·97-s − 1.79·101-s + ⋯ |
Λ(s)=(=(10036224s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(10036224s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
10036224
= 210⋅34⋅112
|
Sign: |
1
|
Analytic conductor: |
639.918 |
Root analytic conductor: |
5.02957 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 10036224, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 11 | C1 | (1−T)2 |
good | 5 | C22 | 1+3T+8T2+3pT3+p2T4 |
| 7 | C2 | (1+pT2)2 |
| 13 | C2 | (1−2T+pT2)2 |
| 17 | D4 | 1+6T+26T2+6pT3+p2T4 |
| 19 | D4 | 1+6T+30T2+6pT3+p2T4 |
| 23 | D4 | 1+3T+10T2+3pT3+p2T4 |
| 29 | D4 | 1+6T+50T2+6pT3+p2T4 |
| 31 | D4 | 1−15T+114T2−15pT3+p2T4 |
| 37 | D4 | 1−T+36T2−pT3+p2T4 |
| 41 | C22 | 1+14T2+p2T4 |
| 43 | D4 | 1+6T+78T2+6pT3+p2T4 |
| 47 | C2 | (1+4T+pT2)2 |
| 53 | C22 | 1+38T2+p2T4 |
| 59 | D4 | 1+13T+122T2+13pT3+p2T4 |
| 61 | D4 | 1+6T−22T2+6pT3+p2T4 |
| 67 | D4 | 1+3T+98T2+3pT3+p2T4 |
| 71 | D4 | 1−19T+194T2−19pT3+p2T4 |
| 73 | C2 | (1+6T+pT2)2 |
| 79 | D4 | 1−18T+222T2−18pT3+p2T4 |
| 83 | D4 | 1−2T+14T2−2pT3+p2T4 |
| 89 | D4 | 1−3T+176T2−3pT3+p2T4 |
| 97 | D4 | 1+T+156T2+pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.270014063154563479463727586111, −8.245626168003335252540146068248, −7.76345369951209799085435051763, −7.67157290009868726354504921527, −6.69831114291708554928070266074, −6.59283119029711512261613926079, −6.34755789326942501570946477295, −6.19121182794177442485949515601, −5.28596208732442966384738442766, −4.94702257623900185278320827007, −4.37077969356154167704719650484, −4.27533101352841133875950963983, −3.69127476549459434347909838450, −3.59800863294767558936023093756, −2.80128735646112043636618196900, −2.41524788257273881335545028224, −1.62732435612824663355192277690, −1.29319010062930106062844847153, 0, 0,
1.29319010062930106062844847153, 1.62732435612824663355192277690, 2.41524788257273881335545028224, 2.80128735646112043636618196900, 3.59800863294767558936023093756, 3.69127476549459434347909838450, 4.27533101352841133875950963983, 4.37077969356154167704719650484, 4.94702257623900185278320827007, 5.28596208732442966384738442766, 6.19121182794177442485949515601, 6.34755789326942501570946477295, 6.59283119029711512261613926079, 6.69831114291708554928070266074, 7.67157290009868726354504921527, 7.76345369951209799085435051763, 8.245626168003335252540146068248, 8.270014063154563479463727586111