L(s) = 1 | + 2-s − 11·4-s + 10·5-s − 14·7-s − 15·8-s + 10·10-s − 4·11-s − 22·13-s − 14·14-s + 61·16-s − 58·17-s − 110·20-s − 4·22-s − 82·23-s + 75·25-s − 22·26-s + 154·28-s − 334·29-s − 210·31-s + 89·32-s − 58·34-s − 140·35-s + 6·37-s − 150·40-s − 176·41-s + 46·43-s + 44·44-s + ⋯ |
L(s) = 1 | + 0.353·2-s − 1.37·4-s + 0.894·5-s − 0.755·7-s − 0.662·8-s + 0.316·10-s − 0.109·11-s − 0.469·13-s − 0.267·14-s + 0.953·16-s − 0.827·17-s − 1.22·20-s − 0.0387·22-s − 0.743·23-s + 3/5·25-s − 0.165·26-s + 1.03·28-s − 2.13·29-s − 1.21·31-s + 0.491·32-s − 0.292·34-s − 0.676·35-s + 0.0266·37-s − 0.592·40-s − 0.670·41-s + 0.163·43-s + 0.150·44-s + ⋯ |
Λ(s)=(=(99225s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(99225s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
99225
= 34⋅52⋅72
|
Sign: |
1
|
Analytic conductor: |
345.424 |
Root analytic conductor: |
4.31110 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 99225, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C1 | (1−pT)2 |
| 7 | C1 | (1+pT)2 |
good | 2 | D4 | 1−T+3p2T2−p3T3+p6T4 |
| 11 | D4 | 1+4T+2598T2+4p3T3+p6T4 |
| 13 | D4 | 1+22T+2458T2+22p3T3+p6T4 |
| 17 | D4 | 1+58T+7794T2+58p3T3+p6T4 |
| 19 | C22 | 1+5490T2+p6T4 |
| 23 | D4 | 1+82T+25182T2+82p3T3+p6T4 |
| 29 | D4 | 1+334T+72842T2+334p3T3+p6T4 |
| 31 | D4 | 1+210T+69230T2+210p3T3+p6T4 |
| 37 | D4 | 1−6T+97490T2−6p3T3+p6T4 |
| 41 | D4 | 1+176T+134094T2+176p3T3+p6T4 |
| 43 | D4 | 1−46T+42430T2−46p3T3+p6T4 |
| 47 | D4 | 1+514T+269870T2+514p3T3+p6T4 |
| 53 | D4 | 1+808T+449478T2+808p3T3+p6T4 |
| 59 | C2 | (1+284T+p3T2)2 |
| 61 | D4 | 1+618T+515018T2+618p3T3+p6T4 |
| 67 | D4 | 1−694T+681118T2−694p3T3+p6T4 |
| 71 | D4 | 1+814T+769934T2+814p3T3+p6T4 |
| 73 | D4 | 1−82T+422290T2−82p3T3+p6T4 |
| 79 | D4 | 1−600T+618846T2−600p3T3+p6T4 |
| 83 | D4 | 1−268T+779030T2−268p3T3+p6T4 |
| 89 | D4 | 1−72T+448286T2−72p3T3+p6T4 |
| 97 | D4 | 1−1626T+1498938T2−1626p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.83220766002518717995974441685, −10.57431655397137215471692263117, −9.697533450317179146007052011089, −9.662480775750861955170523573168, −9.120194146511698226614978741361, −9.018914884707597032364058327883, −8.098503659432543357784373585902, −7.78573627573184770330176879861, −6.97849430202312930360600406647, −6.52369794341279332217201960359, −5.76957120946380157339099050648, −5.64615198411599812420155516438, −4.68081441727888723927357170415, −4.65388526606627060183646159169, −3.56384232611935751687555889382, −3.37030543644790019091490755104, −2.24367500346555214169611067185, −1.60539406169862632853283362378, 0, 0,
1.60539406169862632853283362378, 2.24367500346555214169611067185, 3.37030543644790019091490755104, 3.56384232611935751687555889382, 4.65388526606627060183646159169, 4.68081441727888723927357170415, 5.64615198411599812420155516438, 5.76957120946380157339099050648, 6.52369794341279332217201960359, 6.97849430202312930360600406647, 7.78573627573184770330176879861, 8.098503659432543357784373585902, 9.018914884707597032364058327883, 9.120194146511698226614978741361, 9.662480775750861955170523573168, 9.697533450317179146007052011089, 10.57431655397137215471692263117, 10.83220766002518717995974441685