L(s) = 1 | − 3·2-s + 4-s + 10·5-s + 14·7-s − 3·8-s − 30·10-s − 62·11-s − 6·13-s − 42·14-s + 9·16-s − 40·17-s − 122·19-s + 10·20-s + 186·22-s − 16·23-s + 75·25-s + 18·26-s + 14·28-s − 352·29-s + 66·31-s + 165·32-s + 120·34-s + 140·35-s − 188·37-s + 366·38-s − 30·40-s − 16·41-s + ⋯ |
L(s) = 1 | − 1.06·2-s + 1/8·4-s + 0.894·5-s + 0.755·7-s − 0.132·8-s − 0.948·10-s − 1.69·11-s − 0.128·13-s − 0.801·14-s + 9/64·16-s − 0.570·17-s − 1.47·19-s + 0.111·20-s + 1.80·22-s − 0.145·23-s + 3/5·25-s + 0.135·26-s + 0.0944·28-s − 2.25·29-s + 0.382·31-s + 0.911·32-s + 0.605·34-s + 0.676·35-s − 0.835·37-s + 1.56·38-s − 0.118·40-s − 0.0609·41-s + ⋯ |
Λ(s)=(=(99225s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(99225s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
99225
= 34⋅52⋅72
|
Sign: |
1
|
Analytic conductor: |
345.424 |
Root analytic conductor: |
4.31110 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 99225, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C1 | (1−pT)2 |
| 7 | C1 | (1−pT)2 |
good | 2 | D4 | 1+3T+p3T2+3p3T3+p6T4 |
| 11 | D4 | 1+62T+3582T2+62p3T3+p6T4 |
| 13 | D4 | 1+6T+3378T2+6p3T3+p6T4 |
| 17 | D4 | 1+40T+8750T2+40p3T3+p6T4 |
| 19 | D4 | 1+122T+17398T2+122p3T3+p6T4 |
| 23 | D4 | 1+16T+34pT2+16p3T3+p6T4 |
| 29 | D4 | 1+352T+78278T2+352p3T3+p6T4 |
| 31 | D4 | 1−66T+45870T2−66p3T3+p6T4 |
| 37 | D4 | 1+188T+44542T2+188p3T3+p6T4 |
| 41 | D4 | 1+16T+18350T2+16p3T3+p6T4 |
| 43 | D4 | 1+396T+2226pT2+396p3T3+p6T4 |
| 47 | D4 | 1−4pT+15582T2−4p4T3+p6T4 |
| 53 | D4 | 1+982T+504354T2+982p3T3+p6T4 |
| 59 | D4 | 1+516T+418118T2+516p3T3+p6T4 |
| 61 | D4 | 1+880T+575238T2+880p3T3+p6T4 |
| 67 | D4 | 1+356T+100374T2+356p3T3+p6T4 |
| 71 | D4 | 1+310T+664038T2+310p3T3+p6T4 |
| 73 | D4 | 1−326T+789802T2−326p3T3+p6T4 |
| 79 | D4 | 1−1832T+1824478T2−1832p3T3+p6T4 |
| 83 | D4 | 1−680T+744870T2−680p3T3+p6T4 |
| 89 | D4 | 1+796T+411158T2+796p3T3+p6T4 |
| 97 | D4 | 1+670T+1145410T2+670p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.73367796985506401003902973602, −10.71628834787991071714588334763, −9.915843558118206884024008710122, −9.589166291319292280483701314920, −9.088519870035481934270409011195, −8.749022061685460881585497054662, −8.112804230021044235271879989329, −7.919320767137666454790690186965, −7.34645259867073888196785873983, −6.57278425894894481640026427981, −6.11845432029063796772736407004, −5.57744502018219020086240826481, −4.79606338446240584283964420960, −4.71277872264457071646378309301, −3.57332554106405253211400630797, −2.72285383104770266038427571937, −2.06831059306442767213738978273, −1.56122235597130864247503891068, 0, 0,
1.56122235597130864247503891068, 2.06831059306442767213738978273, 2.72285383104770266038427571937, 3.57332554106405253211400630797, 4.71277872264457071646378309301, 4.79606338446240584283964420960, 5.57744502018219020086240826481, 6.11845432029063796772736407004, 6.57278425894894481640026427981, 7.34645259867073888196785873983, 7.919320767137666454790690186965, 8.112804230021044235271879989329, 8.749022061685460881585497054662, 9.088519870035481934270409011195, 9.589166291319292280483701314920, 9.915843558118206884024008710122, 10.71628834787991071714588334763, 10.73367796985506401003902973602