L(s) = 1 | − 2-s + 4-s − 10·5-s − 14·7-s − 9·8-s + 10·10-s + 22·11-s − 22·13-s + 14·14-s − 47·16-s − 116·17-s + 102·19-s − 10·20-s − 22·22-s − 260·23-s + 75·25-s + 22·26-s − 14·28-s + 196·29-s + 150·31-s + 103·32-s + 116·34-s + 140·35-s − 96·37-s − 102·38-s + 90·40-s + 176·41-s + ⋯ |
L(s) = 1 | − 0.353·2-s + 1/8·4-s − 0.894·5-s − 0.755·7-s − 0.397·8-s + 0.316·10-s + 0.603·11-s − 0.469·13-s + 0.267·14-s − 0.734·16-s − 1.65·17-s + 1.23·19-s − 0.111·20-s − 0.213·22-s − 2.35·23-s + 3/5·25-s + 0.165·26-s − 0.0944·28-s + 1.25·29-s + 0.869·31-s + 0.568·32-s + 0.585·34-s + 0.676·35-s − 0.426·37-s − 0.435·38-s + 0.355·40-s + 0.670·41-s + ⋯ |
Λ(s)=(=(99225s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(99225s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
99225
= 34⋅52⋅72
|
Sign: |
1
|
Analytic conductor: |
345.424 |
Root analytic conductor: |
4.31110 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 99225, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C1 | (1+pT)2 |
| 7 | C1 | (1+pT)2 |
good | 2 | D4 | 1+T+p3T3+p6T4 |
| 11 | D4 | 1−2pT+2718T2−2p4T3+p6T4 |
| 13 | D4 | 1+22T+4450T2+22p3T3+p6T4 |
| 17 | D4 | 1+116T+9030T2+116p3T3+p6T4 |
| 19 | D4 | 1−102T+13134T2−102p3T3+p6T4 |
| 23 | D4 | 1+260T+34734T2+260p3T3+p6T4 |
| 29 | D4 | 1−196T+20942T2−196p3T3+p6T4 |
| 31 | D4 | 1−150T+36542T2−150p3T3+p6T4 |
| 37 | D4 | 1+96T+82550T2+96p3T3+p6T4 |
| 41 | D4 | 1−176T−16914T2−176p3T3+p6T4 |
| 43 | D4 | 1+8pT+171958T2+8p4T3+p6T4 |
| 47 | D4 | 1+560T+248606T2+560p3T3+p6T4 |
| 53 | D4 | 1+326T+204138T2+326p3T3+p6T4 |
| 59 | D4 | 1−844T+474182T2−844p3T3+p6T4 |
| 61 | D4 | 1+204T+455006T2+204p3T3+p6T4 |
| 67 | D4 | 1+104T+537670T2+104p3T3+p6T4 |
| 71 | D4 | 1+1670T+1384382T2+1670p3T3+p6T4 |
| 73 | D4 | 1+386T+152218T2+386p3T3+p6T4 |
| 79 | D4 | 1+888T+1007454T2+888p3T3+p6T4 |
| 83 | D4 | 1+928T+600710T2+928p3T3+p6T4 |
| 89 | D4 | 1+588T+1495334T2+588p3T3+p6T4 |
| 97 | D4 | 1−522T+291282T2−522p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.20852434211860158070550292526, −10.34301194838350969192057189641, −9.912917910576036660002778366986, −9.813598143111122291097187789564, −8.941796239597540146908615809167, −8.733023208634280286081840199193, −8.220907487845438659299340479149, −7.65912481459610089706425179296, −7.08460507343796884953169348500, −6.57599935206256681515534697106, −6.34244154936345227806499879321, −5.62836816283299934943447396523, −4.56804878502591952579584650807, −4.48637974831833031466241011187, −3.68410070749499476586243317733, −2.99071596766604524419226575158, −2.39909018157542419291794056314, −1.38628743103439624835248470911, 0, 0,
1.38628743103439624835248470911, 2.39909018157542419291794056314, 2.99071596766604524419226575158, 3.68410070749499476586243317733, 4.48637974831833031466241011187, 4.56804878502591952579584650807, 5.62836816283299934943447396523, 6.34244154936345227806499879321, 6.57599935206256681515534697106, 7.08460507343796884953169348500, 7.65912481459610089706425179296, 8.220907487845438659299340479149, 8.733023208634280286081840199193, 8.941796239597540146908615809167, 9.813598143111122291097187789564, 9.912917910576036660002778366986, 10.34301194838350969192057189641, 11.20852434211860158070550292526