L(s) = 1 | − 8·2-s + 34·4-s + 10·5-s − 14·7-s − 96·8-s − 80·10-s + 14·11-s + 50·13-s + 112·14-s + 196·16-s + 50·17-s + 36·19-s + 340·20-s − 112·22-s − 244·23-s + 75·25-s − 400·26-s − 476·28-s + 26·29-s − 120·31-s − 352·32-s − 400·34-s − 140·35-s + 564·37-s − 288·38-s − 960·40-s + 328·41-s + ⋯ |
L(s) = 1 | − 2.82·2-s + 17/4·4-s + 0.894·5-s − 0.755·7-s − 4.24·8-s − 2.52·10-s + 0.383·11-s + 1.06·13-s + 2.13·14-s + 3.06·16-s + 0.713·17-s + 0.434·19-s + 3.80·20-s − 1.08·22-s − 2.21·23-s + 3/5·25-s − 3.01·26-s − 3.21·28-s + 0.166·29-s − 0.695·31-s − 1.94·32-s − 2.01·34-s − 0.676·35-s + 2.50·37-s − 1.22·38-s − 3.79·40-s + 1.24·41-s + ⋯ |
Λ(s)=(=(99225s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(99225s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
99225
= 34⋅52⋅72
|
Sign: |
1
|
Analytic conductor: |
345.424 |
Root analytic conductor: |
4.31110 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 99225, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
0.7952317578 |
L(21) |
≈ |
0.7952317578 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 5 | C1 | (1−pT)2 |
| 7 | C1 | (1+pT)2 |
good | 2 | D4 | 1+p3T+15pT2+p6T3+p6T4 |
| 11 | D4 | 1−14T+663T2−14p3T3+p6T4 |
| 13 | D4 | 1−50T+4987T2−50p3T3+p6T4 |
| 17 | D4 | 1−50T+387pT2−50p3T3+p6T4 |
| 19 | D4 | 1−36T+10170T2−36p3T3+p6T4 |
| 23 | D4 | 1+244T+29970T2+244p3T3+p6T4 |
| 29 | D4 | 1−26T+47795T2−26p3T3+p6T4 |
| 31 | D4 | 1+120T−1618T2+120p3T3+p6T4 |
| 37 | D4 | 1−564T+173630T2−564p3T3+p6T4 |
| 41 | D4 | 1−8pT+133986T2−8p4T3+p6T4 |
| 43 | D4 | 1+260T+166666T2+260p3T3+p6T4 |
| 47 | D4 | 1−350T+203423T2−350p3T3+p6T4 |
| 53 | D4 | 1−56T+265770T2−56p3T3+p6T4 |
| 59 | C2 | (1−616T+p3T2)2 |
| 61 | D4 | 1−336T+458858T2−336p3T3+p6T4 |
| 67 | D4 | 1+152T+599110T2+152p3T3+p6T4 |
| 71 | C2 | (1−952T+p3T2)2 |
| 73 | D4 | 1−676T+655606T2−676p3T3+p6T4 |
| 79 | D4 | 1−1014T+1120119T2−1014p3T3+p6T4 |
| 83 | D4 | 1−376T+458918T2−376p3T3+p6T4 |
| 89 | D4 | 1−216T+1417730T2−216p3T3+p6T4 |
| 97 | D4 | 1−2742T+3608187T2−2742p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.05045810834759882923289655509, −10.82595620169439374386044625293, −10.03506708339436406126858493542, −9.991102482284658848926355405589, −9.589197403687613012345096762524, −9.256755215362388152699174337459, −8.765080844569788964574115615407, −8.250511204401108437830195045069, −7.85796112771084375656852881012, −7.51468412112048442240412634178, −6.67226643040837680714918820400, −6.39462802812522710275969801258, −5.85166306504775962032271663219, −5.33990507519871392978892684932, −4.00330066673777330629276434001, −3.55385585016490645879943977057, −2.35611731956218467381565749202, −2.02065331865541195418603221681, −0.878670259546278060408011684066, −0.75815921534852244250859828078,
0.75815921534852244250859828078, 0.878670259546278060408011684066, 2.02065331865541195418603221681, 2.35611731956218467381565749202, 3.55385585016490645879943977057, 4.00330066673777330629276434001, 5.33990507519871392978892684932, 5.85166306504775962032271663219, 6.39462802812522710275969801258, 6.67226643040837680714918820400, 7.51468412112048442240412634178, 7.85796112771084375656852881012, 8.250511204401108437830195045069, 8.765080844569788964574115615407, 9.256755215362388152699174337459, 9.589197403687613012345096762524, 9.991102482284658848926355405589, 10.03506708339436406126858493542, 10.82595620169439374386044625293, 11.05045810834759882923289655509