L(s) = 1 | − 3-s + 4-s − 4·7-s + 9-s − 12-s − 12·13-s + 16-s + 8·19-s + 4·21-s + 6·25-s − 27-s − 4·28-s − 12·31-s + 36-s − 8·37-s + 12·39-s − 8·43-s − 48-s − 2·49-s − 12·52-s − 8·57-s − 8·61-s − 4·63-s + 64-s − 24·67-s + 4·73-s − 6·75-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/2·4-s − 1.51·7-s + 1/3·9-s − 0.288·12-s − 3.32·13-s + 1/4·16-s + 1.83·19-s + 0.872·21-s + 6/5·25-s − 0.192·27-s − 0.755·28-s − 2.15·31-s + 1/6·36-s − 1.31·37-s + 1.92·39-s − 1.21·43-s − 0.144·48-s − 2/7·49-s − 1.66·52-s − 1.05·57-s − 1.02·61-s − 0.503·63-s + 1/8·64-s − 2.93·67-s + 0.468·73-s − 0.692·75-s + ⋯ |
Λ(s)=(=(31212s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(31212s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
31212
= 22⋅33⋅172
|
Sign: |
−1
|
Analytic conductor: |
1.99010 |
Root analytic conductor: |
1.18773 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 31212, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1×C1 | (1−T)(1+T) |
| 3 | C1 | 1+T |
| 17 | C1×C1 | (1−T)(1+T) |
good | 5 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 7 | C2 | (1+2T+pT2)2 |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1+6T+pT2)2 |
| 19 | C2 | (1−4T+pT2)2 |
| 23 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 29 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 31 | C2 | (1+6T+pT2)2 |
| 37 | C2 | (1+4T+pT2)2 |
| 41 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 43 | C2 | (1+4T+pT2)2 |
| 47 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 53 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 59 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 61 | C2 | (1+4T+pT2)2 |
| 67 | C2 | (1+12T+pT2)2 |
| 71 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 73 | C2 | (1−2T+pT2)2 |
| 79 | C2 | (1−10T+pT2)2 |
| 83 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 89 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 97 | C2 | (1−6T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.13636675520507553497406453887, −9.809680223299837765262582433989, −9.330186221363971309576111465163, −8.951168622566808298087877447389, −7.58460004774890445683046626123, −7.50224155158573118874050462938, −6.99640780173569532110131873676, −6.52498883063792512928187502617, −5.71929507199710618712172159386, −5.00716852164944696644803170219, −4.84625070630626219217033988858, −3.34589616522309311397390467846, −3.08824258991321588799800323044, −2.01050304782327789083256558357, 0,
2.01050304782327789083256558357, 3.08824258991321588799800323044, 3.34589616522309311397390467846, 4.84625070630626219217033988858, 5.00716852164944696644803170219, 5.71929507199710618712172159386, 6.52498883063792512928187502617, 6.99640780173569532110131873676, 7.50224155158573118874050462938, 7.58460004774890445683046626123, 8.951168622566808298087877447389, 9.330186221363971309576111465163, 9.809680223299837765262582433989, 10.13636675520507553497406453887