Properties

Label 4-304e2-1.1-c7e2-0-1
Degree $4$
Conductor $92416$
Sign $1$
Analytic cond. $9018.36$
Root an. cond. $9.74500$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 69·3-s + 155·5-s + 2.23e3·7-s + 621·9-s + 3.29e3·11-s − 1.34e4·13-s + 1.06e4·15-s − 3.22e4·17-s + 1.37e4·19-s + 1.54e5·21-s + 8.25e4·23-s + 1.38e4·25-s − 9.19e4·27-s − 1.27e4·29-s − 2.58e5·31-s + 2.27e5·33-s + 3.46e5·35-s − 1.49e5·37-s − 9.26e5·39-s + 3.39e5·41-s + 8.38e4·43-s + 9.62e4·45-s − 1.47e6·47-s + 2.23e6·49-s − 2.22e6·51-s − 9.45e5·53-s + 5.10e5·55-s + ⋯
L(s)  = 1  + 1.47·3-s + 0.554·5-s + 2.46·7-s + 0.283·9-s + 0.746·11-s − 1.69·13-s + 0.818·15-s − 1.59·17-s + 0.458·19-s + 3.63·21-s + 1.41·23-s + 0.177·25-s − 0.898·27-s − 0.0970·29-s − 1.56·31-s + 1.10·33-s + 1.36·35-s − 0.484·37-s − 2.50·39-s + 0.768·41-s + 0.160·43-s + 0.157·45-s − 2.06·47-s + 2.71·49-s − 2.34·51-s − 0.872·53-s + 0.413·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 92416 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 92416 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(92416\)    =    \(2^{8} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(9018.36\)
Root analytic conductor: \(9.74500\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 92416,\ (\ :7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(7.045835036\)
\(L(\frac12)\) \(\approx\) \(7.045835036\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
19$C_1$ \( ( 1 - p^{3} T )^{2} \)
good3$D_{4}$ \( 1 - 23 p T + 460 p^{2} T^{2} - 23 p^{8} T^{3} + p^{14} T^{4} \)
5$D_{4}$ \( 1 - 31 p T + 10178 T^{2} - 31 p^{8} T^{3} + p^{14} T^{4} \)
7$D_{4}$ \( 1 - 2238 T + 2775179 T^{2} - 2238 p^{7} T^{3} + p^{14} T^{4} \)
11$D_{4}$ \( 1 - 3295 T + 38080340 T^{2} - 3295 p^{7} T^{3} + p^{14} T^{4} \)
13$D_{4}$ \( 1 + 13427 T + 138664758 T^{2} + 13427 p^{7} T^{3} + p^{14} T^{4} \)
17$D_{4}$ \( 1 + 32256 T + 1073810905 T^{2} + 32256 p^{7} T^{3} + p^{14} T^{4} \)
23$D_{4}$ \( 1 - 82525 T + 5722043942 T^{2} - 82525 p^{7} T^{3} + p^{14} T^{4} \)
29$D_{4}$ \( 1 + 12749 T + 39176144 p^{2} T^{2} + 12749 p^{7} T^{3} + p^{14} T^{4} \)
31$D_{4}$ \( 1 + 258944 T + 64961539758 T^{2} + 258944 p^{7} T^{3} + p^{14} T^{4} \)
37$D_{4}$ \( 1 + 149260 T + 183707435838 T^{2} + 149260 p^{7} T^{3} + p^{14} T^{4} \)
41$D_{4}$ \( 1 - 339130 T - 4364095006 T^{2} - 339130 p^{7} T^{3} + p^{14} T^{4} \)
43$D_{4}$ \( 1 - 83869 T + 6409629042 p T^{2} - 83869 p^{7} T^{3} + p^{14} T^{4} \)
47$D_{4}$ \( 1 + 1471025 T + 1488141383726 T^{2} + 1471025 p^{7} T^{3} + p^{14} T^{4} \)
53$D_{4}$ \( 1 + 945643 T + 2428814565902 T^{2} + 945643 p^{7} T^{3} + p^{14} T^{4} \)
59$D_{4}$ \( 1 - 969009 T + 3139777837024 T^{2} - 969009 p^{7} T^{3} + p^{14} T^{4} \)
61$D_{4}$ \( 1 + 1506755 T + 5925806441724 T^{2} + 1506755 p^{7} T^{3} + p^{14} T^{4} \)
67$D_{4}$ \( 1 - 1848219 T + 11014380276458 T^{2} - 1848219 p^{7} T^{3} + p^{14} T^{4} \)
71$D_{4}$ \( 1 - 3417184 T + 7686276501674 T^{2} - 3417184 p^{7} T^{3} + p^{14} T^{4} \)
73$D_{4}$ \( 1 + 2499822 T + 17574764549507 T^{2} + 2499822 p^{7} T^{3} + p^{14} T^{4} \)
79$D_{4}$ \( 1 + 2636926 T + 33245149452510 T^{2} + 2636926 p^{7} T^{3} + p^{14} T^{4} \)
83$D_{4}$ \( 1 - 10059354 T + 77358130536910 T^{2} - 10059354 p^{7} T^{3} + p^{14} T^{4} \)
89$D_{4}$ \( 1 + 3506160 T + 657141629522 p T^{2} + 3506160 p^{7} T^{3} + p^{14} T^{4} \)
97$D_{4}$ \( 1 - 60758 p T + 73244272821042 T^{2} - 60758 p^{8} T^{3} + p^{14} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.90298893599899128511606111103, −10.22844225846040421958283151758, −9.435665292219585507758942729541, −9.202300552368330674348662596181, −8.958972265316424280701143677730, −8.361544269113017514538357046938, −7.86671574026825351601757398200, −7.73174629431931853038955644913, −6.87340921962216937674053426317, −6.71163363018131659653850396240, −5.41740733050567321746290065540, −5.33559623320169591781719374553, −4.52592911682541808389319615491, −4.45437369912080224557025067010, −3.37164009701460617257009795158, −2.88993383515185369297525507348, −2.05075396818652840545846865378, −2.02206856251423557377864514305, −1.43071383276805583748172620808, −0.48038851734849477595794653620, 0.48038851734849477595794653620, 1.43071383276805583748172620808, 2.02206856251423557377864514305, 2.05075396818652840545846865378, 2.88993383515185369297525507348, 3.37164009701460617257009795158, 4.45437369912080224557025067010, 4.52592911682541808389319615491, 5.33559623320169591781719374553, 5.41740733050567321746290065540, 6.71163363018131659653850396240, 6.87340921962216937674053426317, 7.73174629431931853038955644913, 7.86671574026825351601757398200, 8.361544269113017514538357046938, 8.958972265316424280701143677730, 9.202300552368330674348662596181, 9.435665292219585507758942729541, 10.22844225846040421958283151758, 10.90298893599899128511606111103

Graph of the $Z$-function along the critical line