Properties

Label 4-294e2-1.1-c5e2-0-6
Degree 44
Conductor 8643686436
Sign 11
Analytic cond. 2223.392223.39
Root an. cond. 6.866796.86679
Motivic weight 55
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 9·3-s + 86·5-s − 36·6-s − 64·8-s + 344·10-s − 34·11-s + 6·13-s − 774·15-s − 256·16-s − 1.90e3·17-s − 1.48e3·19-s − 136·22-s + 224·23-s + 576·24-s + 3.12e3·25-s + 24·26-s + 729·27-s − 1.30e4·29-s − 3.09e3·30-s + 1.73e3·31-s + 306·33-s − 7.61e3·34-s + 7.63e3·37-s − 5.95e3·38-s − 54·39-s − 5.50e3·40-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1.53·5-s − 0.408·6-s − 0.353·8-s + 1.08·10-s − 0.0847·11-s + 0.00984·13-s − 0.888·15-s − 1/4·16-s − 1.59·17-s − 0.946·19-s − 0.0599·22-s + 0.0882·23-s + 0.204·24-s + 25-s + 0.00696·26-s + 0.192·27-s − 2.87·29-s − 0.628·30-s + 0.323·31-s + 0.0489·33-s − 1.12·34-s + 0.916·37-s − 0.669·38-s − 0.00568·39-s − 0.543·40-s + ⋯

Functional equation

Λ(s)=(86436s/2ΓC(s)2L(s)=(Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut & 86436 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}
Λ(s)=(86436s/2ΓC(s+5/2)2L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 86436 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 44
Conductor: 8643686436    =    2232742^{2} \cdot 3^{2} \cdot 7^{4}
Sign: 11
Analytic conductor: 2223.392223.39
Root analytic conductor: 6.866796.86679
Motivic weight: 55
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (4, 86436, ( :5/2,5/2), 1)(4,\ 86436,\ (\ :5/2, 5/2),\ 1)

Particular Values

L(3)L(3) \approx 1.3672280211.367228021
L(12)L(\frac12) \approx 1.3672280211.367228021
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2C2C_2 1p2T+p4T2 1 - p^{2} T + p^{4} T^{2}
3C2C_2 1+p2T+p4T2 1 + p^{2} T + p^{4} T^{2}
7 1 1
good5C22C_2^2 186T+4271T286p5T3+p10T4 1 - 86 T + 4271 T^{2} - 86 p^{5} T^{3} + p^{10} T^{4}
11C22C_2^2 1+34T159895T2+34p5T3+p10T4 1 + 34 T - 159895 T^{2} + 34 p^{5} T^{3} + p^{10} T^{4}
13C2C_2 (13T+p5T2)2 ( 1 - 3 T + p^{5} T^{2} )^{2}
17C22C_2^2 1+112pT+7631p2T2+112p6T3+p10T4 1 + 112 p T + 7631 p^{2} T^{2} + 112 p^{6} T^{3} + p^{10} T^{4}
19C22C_2^2 1+1489T258978T2+1489p5T3+p10T4 1 + 1489 T - 258978 T^{2} + 1489 p^{5} T^{3} + p^{10} T^{4}
23C22C_2^2 1224T6386167T2224p5T3+p10T4 1 - 224 T - 6386167 T^{2} - 224 p^{5} T^{3} + p^{10} T^{4}
29C2C_2 (1+6508T+p5T2)2 ( 1 + 6508 T + p^{5} T^{2} )^{2}
31C22C_2^2 11731T25632790T21731p5T3+p10T4 1 - 1731 T - 25632790 T^{2} - 1731 p^{5} T^{3} + p^{10} T^{4}
37C22C_2^2 17633T11081268T27633p5T3+p10T4 1 - 7633 T - 11081268 T^{2} - 7633 p^{5} T^{3} + p^{10} T^{4}
41C2C_2 (1+15414T+p5T2)2 ( 1 + 15414 T + p^{5} T^{2} )^{2}
43C2C_2 (118491T+p5T2)2 ( 1 - 18491 T + p^{5} T^{2} )^{2}
47C22C_2^2 118462T+111500437T218462p5T3+p10T4 1 - 18462 T + 111500437 T^{2} - 18462 p^{5} T^{3} + p^{10} T^{4}
53C22C_2^2 119956T19953557T219956p5T3+p10T4 1 - 19956 T - 19953557 T^{2} - 19956 p^{5} T^{3} + p^{10} T^{4}
59C22C_2^2 1+31828T+298097285T2+31828p5T3+p10T4 1 + 31828 T + 298097285 T^{2} + 31828 p^{5} T^{3} + p^{10} T^{4}
61C22C_2^2 1+57654T+2479387415T2+57654p5T3+p10T4 1 + 57654 T + 2479387415 T^{2} + 57654 p^{5} T^{3} + p^{10} T^{4}
67C22C_2^2 160563T+2317751862T260563p5T3+p10T4 1 - 60563 T + 2317751862 T^{2} - 60563 p^{5} T^{3} + p^{10} T^{4}
71C2C_2 (1+44834T+p5T2)2 ( 1 + 44834 T + p^{5} T^{2} )^{2}
73C22C_2^2 120821T1639557552T220821p5T3+p10T4 1 - 20821 T - 1639557552 T^{2} - 20821 p^{5} T^{3} + p^{10} T^{4}
79C22C_2^2 130531T2144914438T230531p5T3+p10T4 1 - 30531 T - 2144914438 T^{2} - 30531 p^{5} T^{3} + p^{10} T^{4}
83C2C_2 (1+110602T+p5T2)2 ( 1 + 110602 T + p^{5} T^{2} )^{2}
89C22C_2^2 1+58992T2104003385T2+58992p5T3+p10T4 1 + 58992 T - 2104003385 T^{2} + 58992 p^{5} T^{3} + p^{10} T^{4}
97C2C_2 (1119846T+p5T2)2 ( 1 - 119846 T + p^{5} T^{2} )^{2}
show more
show less
   L(s)=p j=14(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.27387736229650752234088444444, −10.71931116464294747510896777831, −10.35552324586099047025922338445, −9.768045403887808591763810122435, −9.306327293045087413871770529446, −8.774284993239319606535949538733, −8.682455427172272337749185291269, −7.44498123599887760610706494109, −7.29495143853881468371535156304, −6.43624624542158109095244120233, −5.93230521568187760191337984999, −5.91022029342992991163260945346, −5.23193735000298371912898166415, −4.56765105067927125306035083518, −4.19065861651640633201959575238, −3.39851478785159545803861195973, −2.41966581545510576503914260785, −2.14641973567871489123447945075, −1.40329686489076269739106779520, −0.27647657844965387612131433877, 0.27647657844965387612131433877, 1.40329686489076269739106779520, 2.14641973567871489123447945075, 2.41966581545510576503914260785, 3.39851478785159545803861195973, 4.19065861651640633201959575238, 4.56765105067927125306035083518, 5.23193735000298371912898166415, 5.91022029342992991163260945346, 5.93230521568187760191337984999, 6.43624624542158109095244120233, 7.29495143853881468371535156304, 7.44498123599887760610706494109, 8.682455427172272337749185291269, 8.774284993239319606535949538733, 9.306327293045087413871770529446, 9.768045403887808591763810122435, 10.35552324586099047025922338445, 10.71931116464294747510896777831, 11.27387736229650752234088444444

Graph of the ZZ-function along the critical line