L(s) = 1 | + 4·2-s − 9·3-s + 86·5-s − 36·6-s − 64·8-s + 344·10-s − 34·11-s + 6·13-s − 774·15-s − 256·16-s − 1.90e3·17-s − 1.48e3·19-s − 136·22-s + 224·23-s + 576·24-s + 3.12e3·25-s + 24·26-s + 729·27-s − 1.30e4·29-s − 3.09e3·30-s + 1.73e3·31-s + 306·33-s − 7.61e3·34-s + 7.63e3·37-s − 5.95e3·38-s − 54·39-s − 5.50e3·40-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1.53·5-s − 0.408·6-s − 0.353·8-s + 1.08·10-s − 0.0847·11-s + 0.00984·13-s − 0.888·15-s − 1/4·16-s − 1.59·17-s − 0.946·19-s − 0.0599·22-s + 0.0882·23-s + 0.204·24-s + 25-s + 0.00696·26-s + 0.192·27-s − 2.87·29-s − 0.628·30-s + 0.323·31-s + 0.0489·33-s − 1.12·34-s + 0.916·37-s − 0.669·38-s − 0.00568·39-s − 0.543·40-s + ⋯ |
Λ(s)=(=(86436s/2ΓC(s)2L(s)Λ(6−s)
Λ(s)=(=(86436s/2ΓC(s+5/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
86436
= 22⋅32⋅74
|
Sign: |
1
|
Analytic conductor: |
2223.39 |
Root analytic conductor: |
6.86679 |
Motivic weight: |
5 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 86436, ( :5/2,5/2), 1)
|
Particular Values
L(3) |
≈ |
1.367228021 |
L(21) |
≈ |
1.367228021 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−p2T+p4T2 |
| 3 | C2 | 1+p2T+p4T2 |
| 7 | | 1 |
good | 5 | C22 | 1−86T+4271T2−86p5T3+p10T4 |
| 11 | C22 | 1+34T−159895T2+34p5T3+p10T4 |
| 13 | C2 | (1−3T+p5T2)2 |
| 17 | C22 | 1+112pT+7631p2T2+112p6T3+p10T4 |
| 19 | C22 | 1+1489T−258978T2+1489p5T3+p10T4 |
| 23 | C22 | 1−224T−6386167T2−224p5T3+p10T4 |
| 29 | C2 | (1+6508T+p5T2)2 |
| 31 | C22 | 1−1731T−25632790T2−1731p5T3+p10T4 |
| 37 | C22 | 1−7633T−11081268T2−7633p5T3+p10T4 |
| 41 | C2 | (1+15414T+p5T2)2 |
| 43 | C2 | (1−18491T+p5T2)2 |
| 47 | C22 | 1−18462T+111500437T2−18462p5T3+p10T4 |
| 53 | C22 | 1−19956T−19953557T2−19956p5T3+p10T4 |
| 59 | C22 | 1+31828T+298097285T2+31828p5T3+p10T4 |
| 61 | C22 | 1+57654T+2479387415T2+57654p5T3+p10T4 |
| 67 | C22 | 1−60563T+2317751862T2−60563p5T3+p10T4 |
| 71 | C2 | (1+44834T+p5T2)2 |
| 73 | C22 | 1−20821T−1639557552T2−20821p5T3+p10T4 |
| 79 | C22 | 1−30531T−2144914438T2−30531p5T3+p10T4 |
| 83 | C2 | (1+110602T+p5T2)2 |
| 89 | C22 | 1+58992T−2104003385T2+58992p5T3+p10T4 |
| 97 | C2 | (1−119846T+p5T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.27387736229650752234088444444, −10.71931116464294747510896777831, −10.35552324586099047025922338445, −9.768045403887808591763810122435, −9.306327293045087413871770529446, −8.774284993239319606535949538733, −8.682455427172272337749185291269, −7.44498123599887760610706494109, −7.29495143853881468371535156304, −6.43624624542158109095244120233, −5.93230521568187760191337984999, −5.91022029342992991163260945346, −5.23193735000298371912898166415, −4.56765105067927125306035083518, −4.19065861651640633201959575238, −3.39851478785159545803861195973, −2.41966581545510576503914260785, −2.14641973567871489123447945075, −1.40329686489076269739106779520, −0.27647657844965387612131433877,
0.27647657844965387612131433877, 1.40329686489076269739106779520, 2.14641973567871489123447945075, 2.41966581545510576503914260785, 3.39851478785159545803861195973, 4.19065861651640633201959575238, 4.56765105067927125306035083518, 5.23193735000298371912898166415, 5.91022029342992991163260945346, 5.93230521568187760191337984999, 6.43624624542158109095244120233, 7.29495143853881468371535156304, 7.44498123599887760610706494109, 8.682455427172272337749185291269, 8.774284993239319606535949538733, 9.306327293045087413871770529446, 9.768045403887808591763810122435, 10.35552324586099047025922338445, 10.71931116464294747510896777831, 11.27387736229650752234088444444