Properties

Label 4-273e2-1.1-c2e2-0-9
Degree $4$
Conductor $74529$
Sign $1$
Analytic cond. $55.3344$
Root an. cond. $2.72740$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4·4-s + 12·5-s − 7·7-s − 11·8-s − 3·9-s − 12·10-s + 32·11-s + 13·13-s + 7·14-s + 11·16-s − 18·17-s + 3·18-s + 48·20-s − 32·22-s − 4·23-s + 71·25-s − 13·26-s − 28·28-s + 38·29-s − 36·31-s − 44·32-s + 18·34-s − 84·35-s − 12·36-s − 17·37-s − 132·40-s + ⋯
L(s)  = 1  − 1/2·2-s + 4-s + 12/5·5-s − 7-s − 1.37·8-s − 1/3·9-s − 6/5·10-s + 2.90·11-s + 13-s + 1/2·14-s + 0.687·16-s − 1.05·17-s + 1/6·18-s + 12/5·20-s − 1.45·22-s − 0.173·23-s + 2.83·25-s − 1/2·26-s − 28-s + 1.31·29-s − 1.16·31-s − 1.37·32-s + 9/17·34-s − 2.39·35-s − 1/3·36-s − 0.459·37-s − 3.29·40-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74529 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74529 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(74529\)    =    \(3^{2} \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(55.3344\)
Root analytic conductor: \(2.72740\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 74529,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(3.138401277\)
\(L(\frac12)\) \(\approx\) \(3.138401277\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + p T^{2} \)
7$C_2$ \( 1 + p T + p^{2} T^{2} \)
13$C_2$ \( 1 - p T + p^{2} T^{2} \)
good2$C_2^2$ \( 1 + T - 3 T^{2} + p^{2} T^{3} + p^{4} T^{4} \)
5$C_2^2$ \( 1 - 12 T + 73 T^{2} - 12 p^{2} T^{3} + p^{4} T^{4} \)
11$C_2$ \( ( 1 - 16 T + p^{2} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 18 T + 397 T^{2} + 18 p^{2} T^{3} + p^{4} T^{4} \)
19$C_2^2$ \( 1 - 215 T^{2} + p^{4} T^{4} \)
23$C_2^2$ \( 1 + 4 T - 513 T^{2} + 4 p^{2} T^{3} + p^{4} T^{4} \)
29$C_2^2$ \( 1 - 38 T + 603 T^{2} - 38 p^{2} T^{3} + p^{4} T^{4} \)
31$C_2^2$ \( 1 + 36 T + 1393 T^{2} + 36 p^{2} T^{3} + p^{4} T^{4} \)
37$C_2^2$ \( 1 + 17 T - 1080 T^{2} + 17 p^{2} T^{3} + p^{4} T^{4} \)
41$C_2^2$ \( 1 + 72 T + 3409 T^{2} + 72 p^{2} T^{3} + p^{4} T^{4} \)
43$C_2^2$ \( 1 + 29 T - 1008 T^{2} + 29 p^{2} T^{3} + p^{4} T^{4} \)
47$C_2^2$ \( 1 - 54 T + 3181 T^{2} - 54 p^{2} T^{3} + p^{4} T^{4} \)
53$C_2^2$ \( 1 + 40 T - 1209 T^{2} + 40 p^{2} T^{3} + p^{4} T^{4} \)
59$C_2^2$ \( 1 - 114 T + 7813 T^{2} - 114 p^{2} T^{3} + p^{4} T^{4} \)
61$C_2$ \( ( 1 - 47 T + p^{2} T^{2} )( 1 + 47 T + p^{2} T^{2} ) \)
67$C_2$ \( ( 1 - 38 T + p^{2} T^{2} )^{2} \)
71$C_2^2$ \( 1 - 122 T + 9843 T^{2} - 122 p^{2} T^{3} + p^{4} T^{4} \)
73$C_2^2$ \( 1 - 93 T + 8212 T^{2} - 93 p^{2} T^{3} + p^{4} T^{4} \)
79$C_2^2$ \( 1 + 110 T + 5859 T^{2} + 110 p^{2} T^{3} + p^{4} T^{4} \)
83$C_2^2$ \( 1 - 13586 T^{2} + p^{4} T^{4} \)
89$C_2^2$ \( 1 - 252 T + 29089 T^{2} - 252 p^{2} T^{3} + p^{4} T^{4} \)
97$C_2^2$ \( 1 - 153 T + 17212 T^{2} - 153 p^{2} T^{3} + p^{4} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.95902382179321905004390405618, −11.22488167505585336184062649579, −11.14619877834328911531036653100, −10.28573416593000355054848830573, −9.867024544273015349200434746461, −9.572923666257070075663191668414, −9.076977321844362311283762526447, −8.731960276423561460516502352525, −8.586511599161917377986228698299, −7.09557034294648326660543146470, −6.67384033948967563585832636561, −6.39488867995826833621768725262, −6.25334285950647478653503954270, −5.74129387568169768265638655520, −4.92894872059187100032111799361, −3.60495722267018392142778081937, −3.47258895153008436746743151420, −2.21552553649496405938861855446, −1.96543140585216920815810926277, −1.02784823714545493163810671067, 1.02784823714545493163810671067, 1.96543140585216920815810926277, 2.21552553649496405938861855446, 3.47258895153008436746743151420, 3.60495722267018392142778081937, 4.92894872059187100032111799361, 5.74129387568169768265638655520, 6.25334285950647478653503954270, 6.39488867995826833621768725262, 6.67384033948967563585832636561, 7.09557034294648326660543146470, 8.586511599161917377986228698299, 8.731960276423561460516502352525, 9.076977321844362311283762526447, 9.572923666257070075663191668414, 9.867024544273015349200434746461, 10.28573416593000355054848830573, 11.14619877834328911531036653100, 11.22488167505585336184062649579, 11.95902382179321905004390405618

Graph of the $Z$-function along the critical line