L(s) = 1 | + 5-s + 3·7-s + 3·11-s + 12·13-s − 17-s − 2·19-s + 8·23-s + 25-s − 4·29-s − 6·31-s + 3·35-s + 6·37-s − 6·41-s − 43-s + 5·47-s + 3·49-s + 12·53-s + 3·55-s − 8·59-s + 9·61-s + 12·65-s + 24·67-s + 7·73-s + 9·77-s − 4·79-s + 4·83-s − 85-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 1.13·7-s + 0.904·11-s + 3.32·13-s − 0.242·17-s − 0.458·19-s + 1.66·23-s + 1/5·25-s − 0.742·29-s − 1.07·31-s + 0.507·35-s + 0.986·37-s − 0.937·41-s − 0.152·43-s + 0.729·47-s + 3/7·49-s + 1.64·53-s + 0.404·55-s − 1.04·59-s + 1.15·61-s + 1.48·65-s + 2.93·67-s + 0.819·73-s + 1.02·77-s − 0.450·79-s + 0.439·83-s − 0.108·85-s + ⋯ |
Λ(s)=(=(7485696s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(7485696s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
7485696
= 28⋅34⋅192
|
Sign: |
1
|
Analytic conductor: |
477.294 |
Root analytic conductor: |
4.67408 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 7485696, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
5.480399493 |
L(21) |
≈ |
5.480399493 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 19 | C1 | (1+T)2 |
good | 5 | D4 | 1−T−pT3+p2T4 |
| 7 | D4 | 1−3T+6T2−3pT3+p2T4 |
| 11 | C22 | 1−3T+14T2−3pT3+p2T4 |
| 13 | C2 | (1−6T+pT2)2 |
| 17 | D4 | 1+T+24T2+pT3+p2T4 |
| 23 | C2 | (1−4T+pT2)2 |
| 29 | C2 | (1+2T+pT2)2 |
| 31 | D4 | 1+6T+30T2+6pT3+p2T4 |
| 37 | D4 | 1−6T+42T2−6pT3+p2T4 |
| 41 | D4 | 1+6T+50T2+6pT3+p2T4 |
| 43 | D4 | 1+T−6T2+pT3+p2T4 |
| 47 | D4 | 1−5T+90T2−5pT3+p2T4 |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | C2 | (1+4T+pT2)2 |
| 61 | D4 | 1−9T+132T2−9pT3+p2T4 |
| 67 | C2 | (1−12T+pT2)2 |
| 71 | C2 | (1+pT2)2 |
| 73 | D4 | 1−7T+148T2−7pT3+p2T4 |
| 79 | D4 | 1+4T−2T2+4pT3+p2T4 |
| 83 | D4 | 1−4T+6T2−4pT3+p2T4 |
| 89 | C22 | 1+14T2+p2T4 |
| 97 | C2 | (1+6T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.921911727116791371426556241022, −8.631340419532668056649987861946, −8.313422434577610782703747839098, −8.163241199022309603922342786487, −7.43932233232358196747629989360, −7.06630649185132370527665321635, −6.68932255664833789415208962646, −6.33902792531288865110626768653, −5.92766480130418452316482589468, −5.63465522142915149935223728988, −5.11659551098610445376251249123, −4.82933858274108458243299412201, −4.03433540767028760332384776868, −3.83944256472822148577496343454, −3.61821290788363792929502287498, −2.93772816651841095731164005897, −2.15565656473715690413216233405, −1.78932366113614628914885984326, −1.04398047849916943650448216363, −1.02783915716178684131355557050,
1.02783915716178684131355557050, 1.04398047849916943650448216363, 1.78932366113614628914885984326, 2.15565656473715690413216233405, 2.93772816651841095731164005897, 3.61821290788363792929502287498, 3.83944256472822148577496343454, 4.03433540767028760332384776868, 4.82933858274108458243299412201, 5.11659551098610445376251249123, 5.63465522142915149935223728988, 5.92766480130418452316482589468, 6.33902792531288865110626768653, 6.68932255664833789415208962646, 7.06630649185132370527665321635, 7.43932233232358196747629989360, 8.163241199022309603922342786487, 8.313422434577610782703747839098, 8.631340419532668056649987861946, 8.921911727116791371426556241022