L(s) = 1 | − 13-s + 2·19-s + 25-s − 2·37-s + 3·43-s − 49-s + 61-s − 3·67-s − 73-s − 3·79-s + 2·97-s + 2·109-s + 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s + 173-s + 179-s + 181-s + 191-s + ⋯ |
L(s) = 1 | − 13-s + 2·19-s + 25-s − 2·37-s + 3·43-s − 49-s + 61-s − 3·67-s − 73-s − 3·79-s + 2·97-s + 2·109-s + 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s + 173-s + 179-s + 181-s + 191-s + ⋯ |
Λ(s)=(=(7485696s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(7485696s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
7485696
= 28⋅34⋅192
|
Sign: |
1
|
Analytic conductor: |
1.86443 |
Root analytic conductor: |
1.16852 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 7485696, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
1.296867386 |
L(21) |
≈ |
1.296867386 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 19 | C1 | (1−T)2 |
good | 5 | C22 | 1−T2+T4 |
| 7 | C2 | (1−T+T2)(1+T+T2) |
| 11 | C1×C1 | (1−T)2(1+T)2 |
| 13 | C1×C2 | (1+T)2(1−T+T2) |
| 17 | C22 | 1−T2+T4 |
| 23 | C2 | (1−T+T2)(1+T+T2) |
| 29 | C22 | 1−T2+T4 |
| 31 | C2 | (1−T+T2)(1+T+T2) |
| 37 | C2 | (1+T+T2)2 |
| 41 | C22 | 1−T2+T4 |
| 43 | C1×C2 | (1−T)2(1−T+T2) |
| 47 | C2 | (1−T+T2)(1+T+T2) |
| 53 | C22 | 1−T2+T4 |
| 59 | C2 | (1−T+T2)(1+T+T2) |
| 61 | C1×C2 | (1−T)2(1+T+T2) |
| 67 | C1×C2 | (1+T)2(1+T+T2) |
| 71 | C2 | (1−T+T2)(1+T+T2) |
| 73 | C1×C2 | (1+T)2(1−T+T2) |
| 79 | C1×C2 | (1+T)2(1+T+T2) |
| 83 | C1×C1 | (1−T)2(1+T)2 |
| 89 | C22 | 1−T2+T4 |
| 97 | C2 | (1−T+T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.952910772874176106280888074193, −8.943994934304339261617236592804, −8.655110398597480460679181888037, −7.87273262613030846417016401448, −7.63823020565407308784191310789, −7.34073364062009789488295651085, −6.96516226400799493069668125762, −6.77888406630811769064961417941, −5.83912396319886297117849941603, −5.79609977516594648501204724341, −5.46945916640562172902027589448, −4.70815618028868880075134397474, −4.66579629539841551547516813598, −4.17810278864933120319254758079, −3.31808992649296495843495233733, −3.18985694617474133857687924156, −2.76213216514709892984274457454, −2.05880563793082294983593070623, −1.50606362395437365325097187522, −0.76959534355878156740201573646,
0.76959534355878156740201573646, 1.50606362395437365325097187522, 2.05880563793082294983593070623, 2.76213216514709892984274457454, 3.18985694617474133857687924156, 3.31808992649296495843495233733, 4.17810278864933120319254758079, 4.66579629539841551547516813598, 4.70815618028868880075134397474, 5.46945916640562172902027589448, 5.79609977516594648501204724341, 5.83912396319886297117849941603, 6.77888406630811769064961417941, 6.96516226400799493069668125762, 7.34073364062009789488295651085, 7.63823020565407308784191310789, 7.87273262613030846417016401448, 8.655110398597480460679181888037, 8.943994934304339261617236592804, 8.952910772874176106280888074193