Properties

Label 4-2700e2-1.1-c2e2-0-3
Degree $4$
Conductor $7290000$
Sign $1$
Analytic cond. $5412.49$
Root an. cond. $8.57727$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 14·7-s − 34·13-s + 22·19-s − 116·31-s + 14·37-s − 52·43-s + 49·49-s − 2·61-s − 226·67-s + 86·73-s − 98·79-s − 476·91-s − 226·97-s − 34·103-s + 316·109-s + 62·121-s + 127-s + 131-s + 308·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 529·169-s + ⋯
L(s)  = 1  + 2·7-s − 2.61·13-s + 1.15·19-s − 3.74·31-s + 0.378·37-s − 1.20·43-s + 49-s − 0.0327·61-s − 3.37·67-s + 1.17·73-s − 1.24·79-s − 5.23·91-s − 2.32·97-s − 0.330·103-s + 2.89·109-s + 0.512·121-s + 0.00787·127-s + 0.00763·131-s + 2.31·133-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 3.13·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7290000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7290000 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(7290000\)    =    \(2^{4} \cdot 3^{6} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(5412.49\)
Root analytic conductor: \(8.57727\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 7290000,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.3253085415\)
\(L(\frac12)\) \(\approx\) \(0.3253085415\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2} \)
11$C_2^2$ \( 1 - 62 T^{2} + p^{4} T^{4} \)
13$C_2$ \( ( 1 + 17 T + p^{2} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 142 T^{2} + p^{4} T^{4} \)
19$C_2$ \( ( 1 - 11 T + p^{2} T^{2} )^{2} \)
23$C_2^2$ \( 1 + 562 T^{2} + p^{4} T^{4} \)
29$C_2^2$ \( 1 - 62 T^{2} + p^{4} T^{4} \)
31$C_2$ \( ( 1 + 58 T + p^{2} T^{2} )^{2} \)
37$C_2$ \( ( 1 - 7 T + p^{2} T^{2} )^{2} \)
41$C_2^2$ \( 1 + 1138 T^{2} + p^{4} T^{4} \)
43$C_2$ \( ( 1 + 26 T + p^{2} T^{2} )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
53$C_2^2$ \( 1 - 3998 T^{2} + p^{4} T^{4} \)
59$C_2^2$ \( 1 - 6242 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 + T + p^{2} T^{2} )^{2} \)
67$C_2$ \( ( 1 + 113 T + p^{2} T^{2} )^{2} \)
71$C_2^2$ \( 1 - 5582 T^{2} + p^{4} T^{4} \)
73$C_2$ \( ( 1 - 43 T + p^{2} T^{2} )^{2} \)
79$C_2$ \( ( 1 + 49 T + p^{2} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 12158 T^{2} + p^{4} T^{4} \)
89$C_2^2$ \( 1 - 15122 T^{2} + p^{4} T^{4} \)
97$C_2$ \( ( 1 + 113 T + p^{2} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.151322178993067526984288735093, −8.318121973293312706216252529102, −8.066511388683606540014471879570, −7.56658495570221240184994912554, −7.47172580779290328455142438426, −7.01662014103510264702389824312, −6.96545665165691384801862194363, −5.83703262637351096249975713003, −5.76695676484671995615119351334, −5.17488583411634837167253108794, −5.02576195783100008192373951783, −4.59308931400440555740870924873, −4.35718440536272925596858803068, −3.54589940608350636810747312780, −3.22820327335984394095717492577, −2.54044068461591258692336215320, −2.08291220342908919062532842779, −1.66585891248269302550360882605, −1.27347129428514195813543059172, −0.12605478330273678697946599349, 0.12605478330273678697946599349, 1.27347129428514195813543059172, 1.66585891248269302550360882605, 2.08291220342908919062532842779, 2.54044068461591258692336215320, 3.22820327335984394095717492577, 3.54589940608350636810747312780, 4.35718440536272925596858803068, 4.59308931400440555740870924873, 5.02576195783100008192373951783, 5.17488583411634837167253108794, 5.76695676484671995615119351334, 5.83703262637351096249975713003, 6.96545665165691384801862194363, 7.01662014103510264702389824312, 7.47172580779290328455142438426, 7.56658495570221240184994912554, 8.066511388683606540014471879570, 8.318121973293312706216252529102, 9.151322178993067526984288735093

Graph of the $Z$-function along the critical line