Properties

Label 4-2700e2-1.1-c2e2-0-2
Degree $4$
Conductor $7290000$
Sign $1$
Analytic cond. $5412.49$
Root an. cond. $8.57727$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 22·19-s − 26·31-s − 71·49-s − 242·61-s − 22·79-s − 286·109-s + 242·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 146·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + ⋯
L(s)  = 1  − 1.15·19-s − 0.838·31-s − 1.44·49-s − 3.96·61-s − 0.278·79-s − 2.62·109-s + 2·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 0.863·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + 0.00448·223-s + 0.00440·227-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7290000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7290000 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(7290000\)    =    \(2^{4} \cdot 3^{6} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(5412.49\)
Root analytic conductor: \(8.57727\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 7290000,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.2563150977\)
\(L(\frac12)\) \(\approx\) \(0.2563150977\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( 1 + 71 T^{2} + p^{4} T^{4} \)
11$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
13$C_2^2$ \( 1 + 146 T^{2} + p^{4} T^{4} \)
17$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
19$C_2$ \( ( 1 + 11 T + p^{2} T^{2} )^{2} \)
23$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
29$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
31$C_2$ \( ( 1 + 13 T + p^{2} T^{2} )^{2} \)
37$C_2^2$ \( 1 + 2591 T^{2} + p^{4} T^{4} \)
41$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
43$C_2^2$ \( 1 + 23 T^{2} + p^{4} T^{4} \)
47$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
53$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
61$C_2$ \( ( 1 + 121 T + p^{2} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 5906 T^{2} + p^{4} T^{4} \)
71$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
73$C_2^2$ \( 1 + 9791 T^{2} + p^{4} T^{4} \)
79$C_2$ \( ( 1 + 11 T + p^{2} T^{2} )^{2} \)
83$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
97$C_2^2$ \( 1 + 9071 T^{2} + p^{4} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.073557887026736296318514264351, −8.395977746356363626235915588024, −7.980895720707235161431478747590, −7.932706912650293091375922898602, −7.31456573630673369569300113278, −6.78965143778853151482423737410, −6.77217983209893791281833019925, −6.01292603445138993609531518793, −5.89717649137041413326656936094, −5.47603210974417586962935332055, −4.67347215867287830189768132569, −4.65592953884546285833663825212, −4.21993829684377790170927863714, −3.48939822360084130558549362234, −3.27802099989726504563125324409, −2.70998795229766346619217734212, −2.09066974051894200122882418212, −1.68388232994528866587379792820, −1.11915180805950267476258186426, −0.12051863085851703018968819163, 0.12051863085851703018968819163, 1.11915180805950267476258186426, 1.68388232994528866587379792820, 2.09066974051894200122882418212, 2.70998795229766346619217734212, 3.27802099989726504563125324409, 3.48939822360084130558549362234, 4.21993829684377790170927863714, 4.65592953884546285833663825212, 4.67347215867287830189768132569, 5.47603210974417586962935332055, 5.89717649137041413326656936094, 6.01292603445138993609531518793, 6.77217983209893791281833019925, 6.78965143778853151482423737410, 7.31456573630673369569300113278, 7.932706912650293091375922898602, 7.980895720707235161431478747590, 8.395977746356363626235915588024, 9.073557887026736296318514264351

Graph of the $Z$-function along the critical line