Properties

Label 4-2700e2-1.1-c2e2-0-11
Degree $4$
Conductor $7290000$
Sign $1$
Analytic cond. $5412.49$
Root an. cond. $8.57727$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·7-s + 14·13-s + 16·19-s + 58·31-s − 4·37-s + 14·43-s − 50·49-s + 124·61-s + 116·67-s + 104·73-s − 98·79-s + 112·91-s + 68·97-s − 196·103-s + 52·109-s + 197·121-s + 127-s + 131-s + 128·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 191·169-s + ⋯
L(s)  = 1  + 8/7·7-s + 1.07·13-s + 0.842·19-s + 1.87·31-s − 0.108·37-s + 0.325·43-s − 1.02·49-s + 2.03·61-s + 1.73·67-s + 1.42·73-s − 1.24·79-s + 1.23·91-s + 0.701·97-s − 1.90·103-s + 0.477·109-s + 1.62·121-s + 0.00787·127-s + 0.00763·131-s + 0.962·133-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 1.13·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7290000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7290000 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(7290000\)    =    \(2^{4} \cdot 3^{6} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(5412.49\)
Root analytic conductor: \(8.57727\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 7290000,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(5.691761694\)
\(L(\frac12)\) \(\approx\) \(5.691761694\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2$ \( ( 1 - 4 T + p^{2} T^{2} )^{2} \)
11$C_2^2$ \( 1 - 197 T^{2} + p^{4} T^{4} \)
13$C_2$ \( ( 1 - 7 T + p^{2} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 173 T^{2} + p^{4} T^{4} \)
19$C_2$ \( ( 1 - 8 T + p^{2} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 1013 T^{2} + p^{4} T^{4} \)
29$C_2^2$ \( 1 + 523 T^{2} + p^{4} T^{4} \)
31$C_2$ \( ( 1 - 29 T + p^{2} T^{2} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p^{2} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 3182 T^{2} + p^{4} T^{4} \)
43$C_2$ \( ( 1 - 7 T + p^{2} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 3293 T^{2} + p^{4} T^{4} \)
53$C_2^2$ \( 1 + 3202 T^{2} + p^{4} T^{4} \)
59$C_2^2$ \( 1 - 5342 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 - 62 T + p^{2} T^{2} )^{2} \)
67$C_2$ \( ( 1 - 58 T + p^{2} T^{2} )^{2} \)
71$C_2^2$ \( 1 - 7202 T^{2} + p^{4} T^{4} \)
73$C_2$ \( ( 1 - 52 T + p^{2} T^{2} )^{2} \)
79$C_2$ \( ( 1 + 49 T + p^{2} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 13598 T^{2} + p^{4} T^{4} \)
89$C_2$ \( ( 1 - 142 T + p^{2} T^{2} )( 1 + 142 T + p^{2} T^{2} ) \)
97$C_2$ \( ( 1 - 34 T + p^{2} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.565541279068201678278954973660, −8.434061798178957273520451819621, −8.111197071902940814943674820783, −7.996600339948938694877620482296, −7.23003461584255065513397150163, −7.04436689229243711310860950955, −6.58327540388732353701504103654, −6.12938205112103440322370164785, −5.79482697042153267451153792203, −5.28507619229985247104873169409, −4.94218561778789408062852164984, −4.64063401695141065317521571302, −3.92669484754689818062320109565, −3.87478849110491896472061736313, −2.96091346398945191896926698185, −2.91850542461819671961444090688, −1.86919755747770196568461948476, −1.82525451025387048596922460314, −0.808071054063721318869545294482, −0.791657995410884000049234679693, 0.791657995410884000049234679693, 0.808071054063721318869545294482, 1.82525451025387048596922460314, 1.86919755747770196568461948476, 2.91850542461819671961444090688, 2.96091346398945191896926698185, 3.87478849110491896472061736313, 3.92669484754689818062320109565, 4.64063401695141065317521571302, 4.94218561778789408062852164984, 5.28507619229985247104873169409, 5.79482697042153267451153792203, 6.12938205112103440322370164785, 6.58327540388732353701504103654, 7.04436689229243711310860950955, 7.23003461584255065513397150163, 7.996600339948938694877620482296, 8.111197071902940814943674820783, 8.434061798178957273520451819621, 8.565541279068201678278954973660

Graph of the $Z$-function along the critical line