Properties

Label 4-2700e2-1.1-c2e2-0-1
Degree $4$
Conductor $7290000$
Sign $1$
Analytic cond. $5412.49$
Root an. cond. $8.57727$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s + 4·13-s − 14·19-s − 2·31-s − 14·37-s + 34·43-s − 95·49-s − 86·61-s − 44·67-s + 94·73-s − 98·79-s − 8·91-s − 242·97-s + 214·103-s − 278·109-s + 62·121-s + 127-s + 131-s + 28·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 326·169-s + ⋯
L(s)  = 1  − 2/7·7-s + 4/13·13-s − 0.736·19-s − 0.0645·31-s − 0.378·37-s + 0.790·43-s − 1.93·49-s − 1.40·61-s − 0.656·67-s + 1.28·73-s − 1.24·79-s − 0.0879·91-s − 2.49·97-s + 2.07·103-s − 2.55·109-s + 0.512·121-s + 0.00787·127-s + 0.00763·131-s + 4/19·133-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 1.92·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7290000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7290000 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(7290000\)    =    \(2^{4} \cdot 3^{6} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(5412.49\)
Root analytic conductor: \(8.57727\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 7290000,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.2519156630\)
\(L(\frac12)\) \(\approx\) \(0.2519156630\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2$ \( ( 1 + T + p^{2} T^{2} )^{2} \)
11$C_2^2$ \( 1 - 62 T^{2} + p^{4} T^{4} \)
13$C_2$ \( ( 1 - 2 T + p^{2} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 142 T^{2} + p^{4} T^{4} \)
19$C_2$ \( ( 1 + 7 T + p^{2} T^{2} )^{2} \)
23$C_2$ \( ( 1 - 44 T + p^{2} T^{2} )( 1 + 44 T + p^{2} T^{2} ) \)
29$C_2^2$ \( 1 - 962 T^{2} + p^{4} T^{4} \)
31$C_2$ \( ( 1 + T + p^{2} T^{2} )^{2} \)
37$C_2$ \( ( 1 + 7 T + p^{2} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 1742 T^{2} + p^{4} T^{4} \)
43$C_2$ \( ( 1 - 17 T + p^{2} T^{2} )^{2} \)
47$C_2^2$ \( 1 + 82 T^{2} + p^{4} T^{4} \)
53$C_2^2$ \( 1 - 5438 T^{2} + p^{4} T^{4} \)
59$C_2^2$ \( 1 - 6782 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 + 43 T + p^{2} T^{2} )^{2} \)
67$C_2$ \( ( 1 + 22 T + p^{2} T^{2} )^{2} \)
71$C_2^2$ \( 1 - 8462 T^{2} + p^{4} T^{4} \)
73$C_2$ \( ( 1 - 47 T + p^{2} T^{2} )^{2} \)
79$C_2$ \( ( 1 + 49 T + p^{2} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 13058 T^{2} + p^{4} T^{4} \)
89$C_2^2$ \( 1 - 1262 T^{2} + p^{4} T^{4} \)
97$C_2$ \( ( 1 + 121 T + p^{2} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.917278750397641717451897117100, −8.386483020702183134326766322751, −8.198688669471368325422305264859, −7.65223055928857337346280818921, −7.46652692936361828285939946045, −6.77368073529367437145238923481, −6.66837909071271742749310393886, −6.05243560727510142200475898886, −6.01076915260021786531013597371, −5.20438490380602246758907215049, −5.11279218669461817080259970084, −4.31632962449046811813119557449, −4.27135135534846983661453229382, −3.52806133621856937061226097115, −3.28889274458272542671631245710, −2.61177653478821224178785575674, −2.29289030322444914479629994295, −1.48171475943200030156289721972, −1.20574080497244370752311615692, −0.11870043396517160932755271346, 0.11870043396517160932755271346, 1.20574080497244370752311615692, 1.48171475943200030156289721972, 2.29289030322444914479629994295, 2.61177653478821224178785575674, 3.28889274458272542671631245710, 3.52806133621856937061226097115, 4.27135135534846983661453229382, 4.31632962449046811813119557449, 5.11279218669461817080259970084, 5.20438490380602246758907215049, 6.01076915260021786531013597371, 6.05243560727510142200475898886, 6.66837909071271742749310393886, 6.77368073529367437145238923481, 7.46652692936361828285939946045, 7.65223055928857337346280818921, 8.198688669471368325422305264859, 8.386483020702183134326766322751, 8.917278750397641717451897117100

Graph of the $Z$-function along the critical line