Properties

Label 4-264e2-1.1-c2e2-0-1
Degree $4$
Conductor $69696$
Sign $1$
Analytic cond. $51.7461$
Root an. cond. $2.68206$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 2·3-s + 12·4-s − 8·6-s − 32·8-s − 5·9-s − 14·11-s + 24·12-s + 80·16-s − 4·17-s + 20·18-s + 56·22-s − 64·24-s − 50·25-s − 28·27-s − 192·32-s − 28·33-s + 16·34-s − 60·36-s − 92·41-s − 168·44-s + 160·48-s − 98·49-s + 200·50-s − 8·51-s + 112·54-s + 448·64-s + ⋯
L(s)  = 1  − 2·2-s + 2/3·3-s + 3·4-s − 4/3·6-s − 4·8-s − 5/9·9-s − 1.27·11-s + 2·12-s + 5·16-s − 0.235·17-s + 10/9·18-s + 2.54·22-s − 8/3·24-s − 2·25-s − 1.03·27-s − 6·32-s − 0.848·33-s + 8/17·34-s − 5/3·36-s − 2.24·41-s − 3.81·44-s + 10/3·48-s − 2·49-s + 4·50-s − 0.156·51-s + 2.07·54-s + 7·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 69696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 69696 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(69696\)    =    \(2^{6} \cdot 3^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(51.7461\)
Root analytic conductor: \(2.68206\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 69696,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.4313482404\)
\(L(\frac12)\) \(\approx\) \(0.4313482404\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + p T )^{2} \)
3$C_2$ \( 1 - 2 T + p^{2} T^{2} \)
11$C_2$ \( 1 + 14 T + p^{2} T^{2} \)
good5$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
7$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
13$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
17$C_2$ \( ( 1 + 2 T + p^{2} T^{2} )^{2} \)
19$C_2$ \( ( 1 - 34 T + p^{2} T^{2} )( 1 + 34 T + p^{2} T^{2} ) \)
23$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
29$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
41$C_2$ \( ( 1 + 46 T + p^{2} T^{2} )^{2} \)
43$C_2$ \( ( 1 - 14 T + p^{2} T^{2} )( 1 + 14 T + p^{2} T^{2} ) \)
47$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
53$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
59$C_2$ \( ( 1 - 82 T + p^{2} T^{2} )( 1 + 82 T + p^{2} T^{2} ) \)
61$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
67$C_2$ \( ( 1 - 62 T + p^{2} T^{2} )^{2} \)
71$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 142 T + p^{2} T^{2} )( 1 + 142 T + p^{2} T^{2} ) \)
79$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
83$C_2$ \( ( 1 - 158 T + p^{2} T^{2} )^{2} \)
89$C_2$ \( ( 1 - 146 T + p^{2} T^{2} )( 1 + 146 T + p^{2} T^{2} ) \)
97$C_2$ \( ( 1 - 94 T + p^{2} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.80336749437518193559562541059, −11.32627065978106592864861146579, −10.91779064561977793638239571376, −10.32865806456957640401268573534, −9.987606708717199599693871560417, −9.552767115905468611488245600374, −9.132922022417845522915308446752, −8.391440902035262872083499578145, −8.321587562292204631537915704994, −7.68845976713507922485247517972, −7.54175650456623042283414451699, −6.62536571140026943070190178960, −6.25786266993057920231026535832, −5.57392090263471256081235437610, −4.98341732910305405642762075367, −3.47699813429912053767108011948, −3.26241689648122793973265438821, −2.09435769287856637016964126806, −2.05531474876567140283238055154, −0.41410663730054621594562737847, 0.41410663730054621594562737847, 2.05531474876567140283238055154, 2.09435769287856637016964126806, 3.26241689648122793973265438821, 3.47699813429912053767108011948, 4.98341732910305405642762075367, 5.57392090263471256081235437610, 6.25786266993057920231026535832, 6.62536571140026943070190178960, 7.54175650456623042283414451699, 7.68845976713507922485247517972, 8.321587562292204631537915704994, 8.391440902035262872083499578145, 9.132922022417845522915308446752, 9.552767115905468611488245600374, 9.987606708717199599693871560417, 10.32865806456957640401268573534, 10.91779064561977793638239571376, 11.32627065978106592864861146579, 11.80336749437518193559562541059

Graph of the $Z$-function along the critical line