Properties

Label 4-259200-1.1-c1e2-0-71
Degree $4$
Conductor $259200$
Sign $-1$
Analytic cond. $16.5268$
Root an. cond. $2.01626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 2·5-s − 8-s − 2·10-s + 16-s − 8·19-s + 2·20-s + 3·25-s − 12·29-s − 32-s + 8·38-s − 2·40-s + 16·43-s − 10·49-s − 3·50-s − 12·53-s + 12·58-s + 64-s − 8·67-s − 24·71-s − 20·73-s − 8·76-s + 2·80-s − 16·86-s − 16·95-s + 4·97-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.894·5-s − 0.353·8-s − 0.632·10-s + 1/4·16-s − 1.83·19-s + 0.447·20-s + 3/5·25-s − 2.22·29-s − 0.176·32-s + 1.29·38-s − 0.316·40-s + 2.43·43-s − 1.42·49-s − 0.424·50-s − 1.64·53-s + 1.57·58-s + 1/8·64-s − 0.977·67-s − 2.84·71-s − 2.34·73-s − 0.917·76-s + 0.223·80-s − 1.72·86-s − 1.64·95-s + 0.406·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 259200 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 259200 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(259200\)    =    \(2^{7} \cdot 3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(16.5268\)
Root analytic conductor: \(2.01626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 259200,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3 \( 1 \)
5$C_1$ \( ( 1 - T )^{2} \)
good7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.808531037524113106929321069025, −8.330531568433955397282390142839, −7.73490121522356695217356839933, −7.33859557219653016096826874551, −6.86802385357238762255411937862, −6.21060412222094990512561243657, −5.84293355103774809066040280829, −5.62305662493911647485930324213, −4.48715934481021693344557314737, −4.39745787492882284514235740312, −3.37793372322877666574139691343, −2.75202257331423339947272598173, −1.98468742030680472449906296868, −1.53717311332283821140901478063, 0, 1.53717311332283821140901478063, 1.98468742030680472449906296868, 2.75202257331423339947272598173, 3.37793372322877666574139691343, 4.39745787492882284514235740312, 4.48715934481021693344557314737, 5.62305662493911647485930324213, 5.84293355103774809066040280829, 6.21060412222094990512561243657, 6.86802385357238762255411937862, 7.33859557219653016096826874551, 7.73490121522356695217356839933, 8.330531568433955397282390142839, 8.808531037524113106929321069025

Graph of the $Z$-function along the critical line