L(s) = 1 | − 2·5-s − 4·13-s − 4·17-s + 3·25-s + 4·29-s + 12·37-s + 12·41-s + 2·49-s − 12·53-s − 4·61-s + 8·65-s − 12·73-s + 8·85-s + 12·89-s − 28·97-s − 12·101-s + 28·109-s − 36·113-s − 6·121-s − 4·125-s + 127-s + 131-s + 137-s + 139-s − 8·145-s + 149-s + 151-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 1.10·13-s − 0.970·17-s + 3/5·25-s + 0.742·29-s + 1.97·37-s + 1.87·41-s + 2/7·49-s − 1.64·53-s − 0.512·61-s + 0.992·65-s − 1.40·73-s + 0.867·85-s + 1.27·89-s − 2.84·97-s − 1.19·101-s + 2.68·109-s − 3.38·113-s − 0.545·121-s − 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.664·145-s + 0.0819·149-s + 0.0813·151-s + ⋯ |
Λ(s)=(=(259200s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(259200s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
259200
= 27⋅34⋅52
|
Sign: |
−1
|
Analytic conductor: |
16.5268 |
Root analytic conductor: |
2.01626 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 259200, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C1 | (1+T)2 |
good | 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2 | (1+2T+pT2)2 |
| 17 | C2 | (1+2T+pT2)2 |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 29 | C2 | (1−2T+pT2)2 |
| 31 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 37 | C2 | (1−6T+pT2)2 |
| 41 | C2 | (1−6T+pT2)2 |
| 43 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 47 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 53 | C2 | (1+6T+pT2)2 |
| 59 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 61 | C2 | (1+2T+pT2)2 |
| 67 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1+6T+pT2)2 |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1−16T+pT2)(1+16T+pT2) |
| 89 | C2 | (1−6T+pT2)2 |
| 97 | C2 | (1+14T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.635268153066941217007271839152, −8.048390911320260435272830158835, −7.88125929411027787932176182764, −7.21857810559962191471917843249, −7.00520502565783528594752431202, −6.18178055218054403257438482099, −5.99573481729811170443753568761, −5.05802427658335260581937078682, −4.61878022728753276110930411726, −4.28002313553101117805216295071, −3.65788673520365604494122080438, −2.61772465980045468774058435809, −2.60538869357449517223391665122, −1.23519091396578725398334381678, 0,
1.23519091396578725398334381678, 2.60538869357449517223391665122, 2.61772465980045468774058435809, 3.65788673520365604494122080438, 4.28002313553101117805216295071, 4.61878022728753276110930411726, 5.05802427658335260581937078682, 5.99573481729811170443753568761, 6.18178055218054403257438482099, 7.00520502565783528594752431202, 7.21857810559962191471917843249, 7.88125929411027787932176182764, 8.048390911320260435272830158835, 8.635268153066941217007271839152