Properties

Label 4-259200-1.1-c1e2-0-51
Degree $4$
Conductor $259200$
Sign $-1$
Analytic cond. $16.5268$
Root an. cond. $2.01626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 4·13-s − 4·17-s + 3·25-s + 4·29-s + 12·37-s + 12·41-s + 2·49-s − 12·53-s − 4·61-s + 8·65-s − 12·73-s + 8·85-s + 12·89-s − 28·97-s − 12·101-s + 28·109-s − 36·113-s − 6·121-s − 4·125-s + 127-s + 131-s + 137-s + 139-s − 8·145-s + 149-s + 151-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.10·13-s − 0.970·17-s + 3/5·25-s + 0.742·29-s + 1.97·37-s + 1.87·41-s + 2/7·49-s − 1.64·53-s − 0.512·61-s + 0.992·65-s − 1.40·73-s + 0.867·85-s + 1.27·89-s − 2.84·97-s − 1.19·101-s + 2.68·109-s − 3.38·113-s − 0.545·121-s − 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.664·145-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 259200 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 259200 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(259200\)    =    \(2^{7} \cdot 3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(16.5268\)
Root analytic conductor: \(2.01626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 259200,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_1$ \( ( 1 + T )^{2} \)
good7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.635268153066941217007271839152, −8.048390911320260435272830158835, −7.88125929411027787932176182764, −7.21857810559962191471917843249, −7.00520502565783528594752431202, −6.18178055218054403257438482099, −5.99573481729811170443753568761, −5.05802427658335260581937078682, −4.61878022728753276110930411726, −4.28002313553101117805216295071, −3.65788673520365604494122080438, −2.61772465980045468774058435809, −2.60538869357449517223391665122, −1.23519091396578725398334381678, 0, 1.23519091396578725398334381678, 2.60538869357449517223391665122, 2.61772465980045468774058435809, 3.65788673520365604494122080438, 4.28002313553101117805216295071, 4.61878022728753276110930411726, 5.05802427658335260581937078682, 5.99573481729811170443753568761, 6.18178055218054403257438482099, 7.00520502565783528594752431202, 7.21857810559962191471917843249, 7.88125929411027787932176182764, 8.048390911320260435272830158835, 8.635268153066941217007271839152

Graph of the $Z$-function along the critical line