Properties

Label 4-2550e2-1.1-c1e2-0-47
Degree $4$
Conductor $6502500$
Sign $1$
Analytic cond. $414.605$
Root an. cond. $4.51241$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 9-s − 10·11-s + 16-s − 2·19-s − 20·29-s + 10·31-s + 36-s + 12·41-s + 10·44-s + 5·49-s − 16·59-s − 4·61-s − 64-s + 12·71-s + 2·76-s − 10·79-s + 81-s − 24·89-s + 10·99-s + 22·101-s − 10·109-s + 20·116-s + 53·121-s − 10·124-s + 127-s + 131-s + ⋯
L(s)  = 1  − 1/2·4-s − 1/3·9-s − 3.01·11-s + 1/4·16-s − 0.458·19-s − 3.71·29-s + 1.79·31-s + 1/6·36-s + 1.87·41-s + 1.50·44-s + 5/7·49-s − 2.08·59-s − 0.512·61-s − 1/8·64-s + 1.42·71-s + 0.229·76-s − 1.12·79-s + 1/9·81-s − 2.54·89-s + 1.00·99-s + 2.18·101-s − 0.957·109-s + 1.85·116-s + 4.81·121-s − 0.898·124-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6502500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6502500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6502500\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{4} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(414.605\)
Root analytic conductor: \(4.51241\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 6502500,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
17$C_2$ \( 1 + T^{2} \)
good7$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 65 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 85 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 85 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 105 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 158 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.753085849492145649410358642210, −8.062297722908699188937248350481, −7.977376926333309118175734280291, −7.74454738505994152014273527758, −7.34613799676728884530216814158, −6.94274765063363805424984972340, −6.20519285789021037069340056440, −5.75379687540167972938753962772, −5.71549906655029950639976440705, −5.13243726669882680950299969767, −4.92920505331257891477187201512, −4.21844450252741656683311538202, −4.07853809484330157121327256064, −3.20650849535453936657773173674, −2.98209019074261041681377611880, −2.31404446576434806501420573190, −2.15227897478228432824090523678, −1.14469489677111027080542182623, 0, 0, 1.14469489677111027080542182623, 2.15227897478228432824090523678, 2.31404446576434806501420573190, 2.98209019074261041681377611880, 3.20650849535453936657773173674, 4.07853809484330157121327256064, 4.21844450252741656683311538202, 4.92920505331257891477187201512, 5.13243726669882680950299969767, 5.71549906655029950639976440705, 5.75379687540167972938753962772, 6.20519285789021037069340056440, 6.94274765063363805424984972340, 7.34613799676728884530216814158, 7.74454738505994152014273527758, 7.977376926333309118175734280291, 8.062297722908699188937248350481, 8.753085849492145649410358642210

Graph of the $Z$-function along the critical line