L(s) = 1 | + 6·3-s − 6·5-s − 10·7-s + 27·9-s + 16·11-s − 26·13-s − 36·15-s + 4·17-s + 70·19-s − 60·21-s − 128·23-s − 110·25-s + 108·27-s + 80·29-s − 250·31-s + 96·33-s + 60·35-s + 152·37-s − 156·39-s − 146·41-s + 504·43-s − 162·45-s − 524·47-s − 498·49-s + 24·51-s + 52·53-s − 96·55-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.536·5-s − 0.539·7-s + 9-s + 0.438·11-s − 0.554·13-s − 0.619·15-s + 0.0570·17-s + 0.845·19-s − 0.623·21-s − 1.16·23-s − 0.879·25-s + 0.769·27-s + 0.512·29-s − 1.44·31-s + 0.506·33-s + 0.289·35-s + 0.675·37-s − 0.640·39-s − 0.556·41-s + 1.78·43-s − 0.536·45-s − 1.62·47-s − 1.45·49-s + 0.0658·51-s + 0.134·53-s − 0.235·55-s + ⋯ |
Λ(s)=(=(6230016s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(6230016s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
6230016
= 212⋅32⋅132
|
Sign: |
1
|
Analytic conductor: |
21688.0 |
Root analytic conductor: |
12.1354 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 6230016, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1−pT)2 |
| 13 | C1 | (1+pT)2 |
good | 5 | D4 | 1+6T+146T2+6p3T3+p6T4 |
| 7 | D4 | 1+10T+598T2+10p3T3+p6T4 |
| 11 | D4 | 1−16T+918T2−16p3T3+p6T4 |
| 17 | C2 | (1−2T+p3T2)2 |
| 19 | D4 | 1−70T+12118T2−70p3T3+p6T4 |
| 23 | C2 | (1+64T+p3T2)2 |
| 29 | D4 | 1−80T+46310T2−80p3T3+p6T4 |
| 31 | D4 | 1+250T+49782T2+250p3T3+p6T4 |
| 37 | D4 | 1−152T+70470T2−152p3T3+p6T4 |
| 41 | D4 | 1+146T+137634T2+146p3T3+p6T4 |
| 43 | D4 | 1−504T+215286T2−504p3T3+p6T4 |
| 47 | D4 | 1+524T+272222T2+524p3T3+p6T4 |
| 53 | D4 | 1−52T+291198T2−52p3T3+p6T4 |
| 59 | D4 | 1−164T+406182T2−164p3T3+p6T4 |
| 61 | D4 | 1−304T+237958T2−304p3T3+p6T4 |
| 67 | D4 | 1−914T+804838T2−914p3T3+p6T4 |
| 71 | C22 | 1+455470T2+p6T4 |
| 73 | D4 | 1+456T+825950T2+456p3T3+p6T4 |
| 79 | D4 | 1+824T+1009374T2+824p3T3+p6T4 |
| 83 | D4 | 1+828T+1032470T2+828p3T3+p6T4 |
| 89 | D4 | 1−826T+1571354T2−826p3T3+p6T4 |
| 97 | D4 | 1−552T+219630T2−552p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.237531694687323877835094608507, −8.015477672970482303670989439905, −7.65297196239295879219717400119, −7.47341296325385385718878937316, −6.75033180918405066368917242480, −6.73299933138166591858171015248, −6.11863476347586999451652403537, −5.64047112512998964043447999523, −5.22388813953890825643913289344, −4.73143305510029877797670287036, −4.10994378848860783003291260456, −3.94628964754630066782371273748, −3.47843182284336002331919620494, −3.14572912476690580172044778577, −2.45874610749956357644549805760, −2.26462285786915916032528024540, −1.47804494756137105180180355013, −1.12350226157738192658699375204, 0, 0,
1.12350226157738192658699375204, 1.47804494756137105180180355013, 2.26462285786915916032528024540, 2.45874610749956357644549805760, 3.14572912476690580172044778577, 3.47843182284336002331919620494, 3.94628964754630066782371273748, 4.10994378848860783003291260456, 4.73143305510029877797670287036, 5.22388813953890825643913289344, 5.64047112512998964043447999523, 6.11863476347586999451652403537, 6.73299933138166591858171015248, 6.75033180918405066368917242480, 7.47341296325385385718878937316, 7.65297196239295879219717400119, 8.015477672970482303670989439905, 8.237531694687323877835094608507