L(s) = 1 | − 6·3-s − 6·5-s + 10·7-s + 27·9-s − 16·11-s − 26·13-s + 36·15-s + 4·17-s − 70·19-s − 60·21-s + 128·23-s − 110·25-s − 108·27-s + 80·29-s + 250·31-s + 96·33-s − 60·35-s + 152·37-s + 156·39-s − 146·41-s − 504·43-s − 162·45-s + 524·47-s − 498·49-s − 24·51-s + 52·53-s + 96·55-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 0.536·5-s + 0.539·7-s + 9-s − 0.438·11-s − 0.554·13-s + 0.619·15-s + 0.0570·17-s − 0.845·19-s − 0.623·21-s + 1.16·23-s − 0.879·25-s − 0.769·27-s + 0.512·29-s + 1.44·31-s + 0.506·33-s − 0.289·35-s + 0.675·37-s + 0.640·39-s − 0.556·41-s − 1.78·43-s − 0.536·45-s + 1.62·47-s − 1.45·49-s − 0.0658·51-s + 0.134·53-s + 0.235·55-s + ⋯ |
Λ(s)=(=(6230016s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(6230016s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
6230016
= 212⋅32⋅132
|
Sign: |
1
|
Analytic conductor: |
21688.0 |
Root analytic conductor: |
12.1354 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 6230016, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1+pT)2 |
| 13 | C1 | (1+pT)2 |
good | 5 | D4 | 1+6T+146T2+6p3T3+p6T4 |
| 7 | D4 | 1−10T+598T2−10p3T3+p6T4 |
| 11 | D4 | 1+16T+918T2+16p3T3+p6T4 |
| 17 | C2 | (1−2T+p3T2)2 |
| 19 | D4 | 1+70T+12118T2+70p3T3+p6T4 |
| 23 | C2 | (1−64T+p3T2)2 |
| 29 | D4 | 1−80T+46310T2−80p3T3+p6T4 |
| 31 | D4 | 1−250T+49782T2−250p3T3+p6T4 |
| 37 | D4 | 1−152T+70470T2−152p3T3+p6T4 |
| 41 | D4 | 1+146T+137634T2+146p3T3+p6T4 |
| 43 | D4 | 1+504T+215286T2+504p3T3+p6T4 |
| 47 | D4 | 1−524T+272222T2−524p3T3+p6T4 |
| 53 | D4 | 1−52T+291198T2−52p3T3+p6T4 |
| 59 | D4 | 1+164T+406182T2+164p3T3+p6T4 |
| 61 | D4 | 1−304T+237958T2−304p3T3+p6T4 |
| 67 | D4 | 1+914T+804838T2+914p3T3+p6T4 |
| 71 | C22 | 1+455470T2+p6T4 |
| 73 | D4 | 1+456T+825950T2+456p3T3+p6T4 |
| 79 | D4 | 1−824T+1009374T2−824p3T3+p6T4 |
| 83 | D4 | 1−828T+1032470T2−828p3T3+p6T4 |
| 89 | D4 | 1−826T+1571354T2−826p3T3+p6T4 |
| 97 | D4 | 1−552T+219630T2−552p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.274090572441093308961868206413, −7.972556742047539197724692053360, −7.60692503212540092891439426325, −7.22744247796560373984866853908, −6.81036324951670558010687840380, −6.41211384218241928822686503231, −6.10500889564802934571012423275, −5.66825137743847929935455953648, −5.03646704181157927918863703045, −4.94699665447484958439676613116, −4.39812110862154928310069838310, −4.32279236506706821650487693490, −3.33861678365140594515102483672, −3.28707266826865341493779101878, −2.30859194913056508998304192021, −2.14336848176103515447395174572, −1.22193273094220616114550804154, −0.949913636232847777923886681029, 0, 0,
0.949913636232847777923886681029, 1.22193273094220616114550804154, 2.14336848176103515447395174572, 2.30859194913056508998304192021, 3.28707266826865341493779101878, 3.33861678365140594515102483672, 4.32279236506706821650487693490, 4.39812110862154928310069838310, 4.94699665447484958439676613116, 5.03646704181157927918863703045, 5.66825137743847929935455953648, 6.10500889564802934571012423275, 6.41211384218241928822686503231, 6.81036324951670558010687840380, 7.22744247796560373984866853908, 7.60692503212540092891439426325, 7.972556742047539197724692053360, 8.274090572441093308961868206413